MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

Dataset

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

Motication:

  1. Variation of scale in medical images: 医学图像在尺度上的多样性
  2. Probable semantic gap between the corresponding levels of the encoder-decoder: 编解码器对一个级别之间可能存在的语义鸿沟

For 1 problem:

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

把unet中每一个模块换成了multiblock,类似于inception的结构去更好的处理尺寸问题,图a是inception结构,图b处理成串联结构,2个3x3conv等于一个5x5conv,3个3x3conv等于一个7x7conv,所以中间连接path就构成了串联结构,然后在引入一条残差,后面用add融合。

For 2 problem:

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

主要在于不能直接将编码器得到的特征图直接与解码器输出的特征图直接串联,两者之间存在Gap,作者便在跳跃连接的那条路径在加上一些卷积层,称之为“Res Path”

3X3如果是same就不会有尺寸缩减,然后1x1补充了被填充为0的那部分,所以没什么问题

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

 

 

MultiResUNet: Rethinking the unet architecture for multimodel biomedical image segmentation

上一篇:src和href的区别


下一篇:目标检测(一)R-CNN--Rich feature hierarchies for accurate object detection and semantic segmentation(V5)