在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  近年来,许多有效的在线学习算法的设计受到凸优化工具的影响。 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析:

  在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  凸集的定义:

  在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  一个向量在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3 的Regret定义为:

  在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  如前所述,算法相对于竞争向量的集合U的Regret被定义为:

  在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  备注:

  在线凸优化问题中,学习机的预测应该来自集合S,而我们分析关于集合U的Regret。当我们不指定U时,我们默认U=S。另外,S的默认设置将是在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

  未完,待续。。。。。。

  接下来,我们从凸化技术开始,展示了如何在非凸问题中利用在线凸优化框架。然后,我们开始描述和分析在线凸优化的算法框架。

 

  

上一篇:Linux 程序,进程和线程


下一篇:nginx 开启高效文件传输模式