函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵
\[
H = \begin{bmatrix}
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex]
\vdots & \vdots & \ddots & \vdots \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}.
\]
\[
h_{ij} = \frac {\partial^2f}{\partial x_i \partial x_j}
\]
当\(f\)为连续函数时, 高阶偏导数的值与偏导顺序无关. 所以Hessian Matrix是对称阵.
相关文章
- 09-25UVA Matrix Chain Multiplication
- 09-25UVA 442 Matrix Chain Multiplication
- 09-25Power of Matrix UVA - 11149
- 09-25poj 3318 Matrix Multiplication
- 09-25POJ 3422 Kaka's Matrix Travels 【最小费用最大流】
- 09-25题解 matrix
- 09-25Spiral Matrix I&&II
- 09-25CF1500C - Matrix Sorting
- 09-25Matrix Chain Multiplication UVA - 442
- 09-25442 - Matrix Chain Multiplication