Hessian Matrix

函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵

\[
H = \begin{bmatrix}
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex]
\vdots & \vdots & \ddots & \vdots \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}.
\]

\[
h_{ij} = \frac {\partial^2f}{\partial x_i \partial x_j}
\]

当\(f\)为连续函数时, 高阶偏导数的值与偏导顺序无关. 所以Hessian Matrix是对称阵.

上一篇:PHP不使用递归的无限级分类


下一篇:Java CAS 和ABA问题