使用自己的VOC数据集配置训练yolov5网络
1.下载yolov5网络模型
2.制作自己的数据集
3.将voc数据及转化为YOLO数据集
注意 :路径中不要含有中文,数据集图片的名称也不要含有中文!(如果一定要含有的话,需要在代码的os操作中加入encoding='utf-8'
) 例如:open(save_dir / 'hyp.yaml', 'w')->open(save_dir / 'hyp.yaml', 'w',encoding='utf-8'
)`
建立文件夹: VOCdevkit
次级目录:VOC2007
次次级目录:Annotations (包含的是标注后生成的xml文件)
JPEGImages(包含的是数据集图片)
在VOCdevkit同级目录下 建立文件voc_to_yolo.py
类别:需要修改 classes
测试集训练集比例:可以修改 if(probo < 80) 【训练集占80/100】
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
classes=["class1","class2","class3"] #此处要改成自己的标签类别名称
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' %image_id,encoding='utf-8')
out_file = open('VOCdevkit/VOC2007/labels/%s.txt' %image_id, 'w',encoding='utf-8')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
#print("image_id = %s\n" %image_id)
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
wd = os.getcwd()
wd = os.getcwd()
work_sapce_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
work_sapce_dir = os.path.join(work_sapce_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
VOC_file_dir = os.path.join(work_sapce_dir, "ImageSets/")
if not os.path.isdir(VOC_file_dir):
os.mkdir(VOC_file_dir)
VOC_file_dir = os.path.join(VOC_file_dir, "Main/")
if not os.path.isdir(VOC_file_dir):
os.mkdir(VOC_file_dir)
train_file = open(os.path.join(wd, "2007_train.txt"), 'w',encoding='utf-8')
test_file = open(os.path.join(wd, "2007_test.txt"), 'w',encoding='utf-8')
train_file.close()
test_file.close()
VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/train.txt"), 'w',encoding='utf-8')
VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/test.txt"), 'w',encoding='utf-8')
VOC_train_file.close()
VOC_test_file.close()
if not os.path.exists('VOCdevkit/VOC2007/labels'):
os.makedirs('VOCdevkit/VOC2007/labels')
train_file = open(os.path.join(wd, "2007_train.txt"), 'a',encoding='utf-8')
test_file = open(os.path.join(wd, "2007_test.txt"), 'a',encoding='utf-8')
VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/train.txt"), 'a',encoding='utf-8')
VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/test.txt"), 'a',encoding='utf-8')
list = os.listdir(image_dir) # list image files
probo = random.randint(1, 100)
print("Probobility: %d" % probo)
for i in range(0,len(list)):
path = os.path.join(image_dir,list[i])
if os.path.isfile(path):
image_path = image_dir + list[i]
voc_path = list[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
probo = random.randint(1, 100)
print("Probobility: %d" % probo)
if(probo < 80)://在这里修改训练集测试集比例
if os.path.exists(annotation_path):
train_file.write(image_path + '\n')
VOC_train_file.write(voc_nameWithoutExtention + '\n')
convert_annotation(nameWithoutExtention)
else:
if os.path.exists(annotation_path):
test_file.write(image_path + '\n')
VOC_test_file.write(voc_nameWithoutExtention + '\n')
convert_annotation(nameWithoutExtention)
train_file.close()
test_file.close()
VOC_train_file.close()
VOC_test_file.close()
运行后生成 label 文件夹,将其中的.txt文件全部复制进JEPGImages中
4.下载与训练权重
下载地址:百度网盘:预训练权重 密码:dv17
5.修改文件参数
yolov5- model文件夹下
修改.yaml文件中的 nc:(自己的类别数量)
同理data文件夹下,建立一个mine.yaml文件
train: D:/2007_train.txt # 在第3步运行下生成的和VOCdevkit同级路径下的文件
val: D:/2007_test.txt # 同上
# number of classes
nc: 3#分类数量
# class names
names: ["class1","class2","class3"]
6.运行
终端:
python train.py --data (coco.yaml文件所在的路径) --cfg (yolov5s.yaml所在的路径) --weights '(.pt权重文件所在路径,在yolov5的下级目录中)' --batch-size 64(数字大小根据自己的电脑性能设定)