文章概览:
1 前言
Hadoop高可用品台搭建完备后,参见《Hadoop高可用平台搭建》,下一步是在集群上跑任务,本文主要讲述Eclipse远程提交hadoop集群任务。
2 Eclipse查看远程hadoop集群文件
2.1 编译hadoop eclipse 插件
Hadoop集群文件查看可以通过webUI或hadoop Cmd,为了在Eclipse上方便增删改查集群文件,我们需要编译hadoop eclipse 插件,步骤如下:
① 环境准备
JDK环境配置 配置JAVA_HOME,并将bin目录配置到path
ANT环境配置 配置ANT_HOME,并将bin目录配置到path
在cmd查看:
② 软件准备
hadoop2x-eclipse-plugin-master https://github.com/winghc/hadoop2x-eclipse-plugin
hadoop-common-2.2.0-bin-master https://github.com/srccodes/hadoop-common-2.2.0-bin
hadoop-2.6.0
eclipse-jee-luna-SR2-win32-x86_64
③ 编译
注:软件位置为自己机器上位置,请勿照搬。
E:\>cd E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin>ant jar -Dve
rsion=2.6. -Declipse.home=E:\eclipse -Dhadoop.home=E:\hadoop\hadoop-2.6.
Buildfile: E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin\b
uild.xml check-contrib: init:
[echo] contrib: eclipse-plugin init-contrib: ivy-probe-antlib: ivy-init-antlib: ivy-init:
[ivy:configure] :: Ivy 2.1. - :: http://ant.apache.org/ivy/ ::
[ivy:configure] :: loading settings :: file = E:\hadoop\hadoop2x-eclipse-plugin-
master\ivy\ivysettings.xml ivy-resolve-common: ivy-retrieve-common:
[ivy:cachepath] DEPRECATED: 'ivy.conf.file' is deprecated, use 'ivy.settings.fil
e' instead
[ivy:cachepath] :: loading settings :: file = E:\hadoop\hadoop2x-eclipse-plugin-
master\ivy\ivysettings.xml compile:
[echo] contrib: eclipse-plugin
[javac] E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin\
build.xml:: warning: 'includeantruntime' was not set, defaulting to build.sysc
lasspath=last; set to false for repeatable builds jar: BUILD SUCCESSFUL
Total time: seconds
成功编译,生成如下图:
④ 将改文件拷贝到Eclipse中plugins目录下,重启Eclipse会出现:
2.2 配置hadoop选项
打开Map/Reduce Locations
编辑Map/Reduce配置项:
根据上一篇,我们配置用户hadoop,Active HDFS和Active NM位置信息。
完成后,就可以在Eclipse中查看HDFS文件信息:
2.3 hdfs简单实例
我们编写一个hdfs简单实例,来远程操作hadoop。
package com.diexun.cn.mapred; import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path; public class MR2Test { static final String INPUT_PATH = "hdfs://192.168.137.101:9000/hello";
static final String OUTPUT_PATH = "hdfs://192.168.137.101:9000/output"; public static void main(String[] args) throws IOException, URISyntaxException {
Configuration conf = new Configuration();
final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
final Path outPath = new Path(OUTPUT_PATH);
if (fileSystem.exists(outPath)) {
fileSystem.delete(outPath, true);
} FSDataOutputStream fsDataOutputStream = fileSystem.create(new Path(INPUT_PATH));
fsDataOutputStream.writeBytes("welcome to here ...");
} }
用Eclipse查看HDFS文件,发现hello文件被修改为“welcome to here ...”。
3 Eclipse提交远程hadoop集群任务
正式进入本文的正题,新建一个Map/Reduce Project,会引用很多jar(注:平常我们都是新建Maven项目进行开发,有利于程序迁移及体积,后面的文章会以Maven构建),将自带WordCount实例拷贝到Eclipse,
配置运行参数:(注:填写hdfs集群上路径,本地路径无效)
执行,出现线面结果:
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:557)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
at org.apache.hadoop.util.DiskChecker.checkAccessByFileMethods(DiskChecker.java:187)
at org.apache.hadoop.util.DiskChecker.checkDirAccess(DiskChecker.java:174)
at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:108)
at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.confChanged(LocalDirAllocator.java:285)
at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:344)
at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:150)
at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:131)
at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:115)
at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:131)
at org.apache.hadoop.mapred.LocalJobRunner$Job.<init>(LocalJobRunner.java:163)
at org.apache.hadoop.mapred.LocalJobRunner.submitJob(LocalJobRunner.java:731)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:536)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)
at WordCount.main(WordCount.java:76)
方便后面打印,先添加log4j.properties文件:
log4j.rootLogger=DEBUG,stdout,R log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p - %m%n log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=mapreduce_test.log
log4j.appender.R.MaxFileSize=1MB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n
log4j.logger.com.codefutures=INFO
根据出错提示,是由于NativeIO.java中return access0(path, desiredAccess.accessRight());导致,此句注,改为返回return true。
修改源码后,在项目里创建和Apache中一样的包,此包会覆盖Apache源码包,如下:
再次执行:
INFO - Job job_local401325246_0001 completed successfully
DEBUG - PrivilegedAction as:wangxiaolong (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:764)
INFO - Counters: 38
File System Counters
FILE: Number of bytes read=16290
FILE: Number of bytes written=545254
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=38132
HDFS: Number of bytes written=6834
HDFS: Number of read operations=15
HDFS: Number of large read operations=0
HDFS: Number of write operations=4
Map-Reduce Framework
Map input records=174
Map output records=1139
Map output bytes=23459
Map output materialized bytes=7976
Input split bytes=99
Combine input records=1139
Combine output records=286
Reduce input groups=286
Reduce shuffle bytes=7976
Reduce input records=286
Reduce output records=286
Spilled Records=572
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=18
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=468713472
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=19066
File Output Format Counters
Bytes Written=6834
确实已经成功执行了,可发现“INFO - Job job_local401325246_0001 completed successfully”,
观察http://nns:8088/cluster/apps也没有发现该任务,说明此任务并未提交到集群执行。
添加配置文件,如下:
配置文件直接从集群下载(注:集群中yarn-site.xml配置中“yarn.resourcemanager.ha.id”是有所不同的),该下载哪份配置?
由于集群中Active RM是nns,故下载nns中yarn-site.xml配置。执行:
Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.diexun.cn.mapred.WordCount$TokenizerMapper not found
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)
at org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:)
at org.apache.hadoop.mapred.YarnChild$.run(YarnChild.java:)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:)
Caused by: java.lang.ClassNotFoundException: Class com.diexun.cn.mapred.WordCount$TokenizerMapper not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)
... more
没有找到对应的代码文件,我们把代码打包,并设置conf,conf.set("mapred.jar", "**.jar"); 再次执行:
Exception message: /bin/bash: line : fg: no job control Stack trace: ExitCodeException exitCode=: /bin/bash: line : fg: no job control at org.apache.hadoop.util.Shell.runCommand(Shell.java:)
at org.apache.hadoop.util.Shell.run(Shell.java:)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:)
at java.util.concurrent.FutureTask.run(FutureTask.java:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
出现如下错误,是由于平台引起,在hadoop2.2~2.5中需修改源码编译(略),hadoop2.6已经可以直接添加配置,conf.set("mapreduce.app-submission.cross-platform", "true");或直接到mapred-site.xml中配置。再次执行:
INFO - Job job_1438912697979_0023 completed successfully
DEBUG - PrivilegedAction as:wangxiaolong (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:)
DEBUG - IPC Client () connection to dn2/192.168.137.104: from wangxiaolong sending #
DEBUG - IPC Client () connection to dn2/192.168.137.104: from wangxiaolong got value #
DEBUG - Call: getCounters took 139ms
INFO - Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-seconds taken by all map tasks=
Total vcore-seconds taken by all reduce tasks=
Total megabyte-seconds taken by all map tasks=
Total megabyte-seconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
至此,任务已经成功提交至集群执行。
有时我们想用我们特定用户去执行任务(注:dfs.permissions.enabled为true时,往往会涉及用户权限问题),可以在VM arguments中设置,这样任务的提交这就变成了设定者。
4 小结
本文主要阐述hadoop eclipse插件的编译与远程提交hadoop集群任务。hadoop eclipse插件的编译需要注意软件安装位置对应。远程提交hadoop集群任务需留意,本地与HDFS文件路径异同,加载特定文件配置,指定特定用户,跨平台异常等问题。
参考:
http://www.cxyclub.cn/n/48423/
http://zy19982004.iteye.com/blog/2031172
http://www.iteye.com/blogs/subjects/Hadoop
http://qindongliang.iteye.com/blog/2078452