贝叶斯分类器(Bayes分类器)

贝叶斯(Bayes)定理
     贝叶斯分类器(Bayes分类器)(条件概率)
 
贝叶斯分类器(Bayes分类器)
  1概念:
  • 将每个属性及类别标记视为随机变量
  • 给定一个具有属性集合(A1, A2,…,An)的记录
  • 目标是预测类别属性C
  • 具体而言,要寻找使得P(C| A1, A2,…,An )最大的类别C。

2方法:

  • 利用Bayes定理计算所有类别C的后验概率P(C | A1, A2, …, An)
           贝叶斯分类器(Bayes分类器)
        选择使如下概率值最大的类别C :P(C | A1, A2, …, An)
        等价于使如下概率值最大:P(A1, A2, …, An|C) P(C)
 
朴素贝叶斯分类器(朴素Bayes分类器)
  • l假定给定类别的条件下属性Ai之间是独立的:   
    P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj) 
    可以从Ai和Cj中估算出P(Ai| Cj),类别为使P(Cj)P(Ai| Cj)最大的类Cj

举例

1、如图所示,已知以下训练集Give Birth,Can Fly,Live in Water,Have Legs的属性,判断所给出测试集是属于(class)哪一类

贝叶斯分类器(Bayes分类器) 贝叶斯分类器(Bayes分类器)

2、计算

贝叶斯分类器(Bayes分类器)

解释:p(A|M)=6/7*6/7*2/7*2/7:  class中属于动物类的有7个,在这7个里,其中Give Birth是yes的有6个;Can Fly是no的有6个;Live in Water是yes的有2个;Have Legs是no的有2个。

p(A|N)=1/13*10/13*3/13*4/13:  class中属于非动物类的有13个,在这13个里,其中Give Birth是yes的有1个;Can Fly是no的有10个;Live in Water是yes的有3个;Have Legs是no的有4个。

贝叶斯分类器(Bayes分类器)

因为P(A|M)P(M)>P(A|N)P(N),所以测试类为动物

上一篇:java中的移位运算符:<<,>>,>>>总结(转)


下一篇:.Net 内存池