Python GIL 多线程机制 (C source code)

最近阅读《Python源码剖析》对进程线程的封装解释:

GIL,Global Interpreter Lock,对于python的多线程机制非常重要,其如何实现的?代码中实现如下:

Python GIL 多线程机制 (C source code)

指向一个void*,C语言中的空指针类型可以指向任意类型。Python建立多线程环境的动作只会执行一次。

PyEval_InitThreads--》PyThread_allocate_lock创建GIL之后,当前线程开始遵守python的多线程机制,即任何调用Python C API之前需要先获得GIL.

也就是代码中PyThread_acquire_lock尝试获取GIL。

Python GIL 多线程机制 (C source code)

static PyMethodDef thread_methods[] = {
{"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread,
METH_VARARGS,
start_new_doc},
{"start_new", (PyCFunction)thread_PyThread_start_new_thread,
METH_VARARGS,
start_new_doc},
{"allocate_lock", (PyCFunction)thread_PyThread_allocate_lock,
METH_NOARGS, allocate_doc},
{"allocate", (PyCFunction)thread_PyThread_allocate_lock,
METH_NOARGS, allocate_doc},
{"exit_thread", (PyCFunction)thread_PyThread_exit_thread,
METH_NOARGS, exit_doc},
{"exit", (PyCFunction)thread_PyThread_exit_thread,
METH_NOARGS, exit_doc},
{"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main,
METH_NOARGS, interrupt_doc},
{"get_ident", (PyCFunction)thread_get_ident,
METH_NOARGS, get_ident_doc},
{"_count", (PyCFunction)thread__count,
METH_NOARGS, _count_doc},
{"stack_size", (PyCFunction)thread_stack_size,
METH_VARARGS,
stack_size_doc},
{NULL, NULL} /* sentinel */
}; /*创建bootstate,并初始化,其保存关于线程的一切信息,如线程过程,和参数等,*/
static PyObject *
thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs)
{
PyObject *func, *args, *keyw = NULL;
struct bootstate *boot;
long ident; if (!PyArg_UnpackTuple(fargs, "start_new_thread", , ,
&func, &args, &keyw))
return NULL;
if (!PyCallable_Check(func)) {
PyErr_SetString(PyExc_TypeError,
"first arg must be callable");
return NULL;
}
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_TypeError,
"2nd arg must be a tuple");
return NULL;
}
if (keyw != NULL && !PyDict_Check(keyw)) {
PyErr_SetString(PyExc_TypeError,
"optional 3rd arg must be a dictionary");
return NULL;
}
boot = PyMem_NEW(struct bootstate, );
if (boot == NULL)
return PyErr_NoMemory();
boot->interp = PyThreadState_GET()->interp;
boot->func = func;
boot->args = args;
boot->keyw = keyw;
boot->tstate = _PyThreadState_Prealloc(boot->interp);
if (boot->tstate == NULL) {
PyMem_DEL(boot);
return PyErr_NoMemory();
}
Py_INCREF(func);
Py_INCREF(args);
Py_XINCREF(keyw);
PyEval_InitThreads(); /* Start the interpreter's thread-awareness */
ident = PyThread_start_new_thread(t_bootstrap, (void*) boot);
if (ident == -) {
PyErr_SetString(ThreadError, "can't start new thread");
Py_DECREF(func);
Py_DECREF(args);
Py_XDECREF(keyw);
PyThreadState_Clear(boot->tstate);
PyMem_DEL(boot);
return NULL;
}
return PyInt_FromLong(ident);
} /*以boot为参数,创建一个原生线程*/
PyThreadState *
_PyThreadState_Prealloc(PyInterpreterState *interp)
{
return new_threadstate(interp, );
} static PyThreadState *
new_threadstate(PyInterpreterState *interp, int init)
{
PyThreadState *tstate = (PyThreadState *)malloc(sizeof(PyThreadState)); if (_PyThreadState_GetFrame == NULL)
_PyThreadState_GetFrame = threadstate_getframe; if (tstate != NULL) {
tstate->interp = interp; tstate->frame = NULL;
tstate->recursion_depth = ;
tstate->tracing = ;
tstate->use_tracing = ;
tstate->tick_counter = ;
tstate->gilstate_counter = ;
tstate->async_exc = NULL;
#ifdef WITH_THREAD
tstate->thread_id = PyThread_get_thread_ident();
#else
tstate->thread_id = ;
#endif tstate->dict = NULL; tstate->curexc_type = NULL;
tstate->curexc_value = NULL;
tstate->curexc_traceback = NULL; tstate->exc_type = NULL;
tstate->exc_value = NULL;
tstate->exc_traceback = NULL; tstate->c_profilefunc = NULL;
tstate->c_tracefunc = NULL;
tstate->c_profileobj = NULL;
tstate->c_traceobj = NULL; tstate->trash_delete_nesting = ;
tstate->trash_delete_later = NULL; if (init)
_PyThreadState_Init(tstate); HEAD_LOCK();
tstate->next = interp->tstate_head;
interp->tstate_head = tstate;
HEAD_UNLOCK();
} return tstate;
}

GIL(NRMUTEX)对象,结构中有4个成员,其中hevent就是Win32平台下的Event内核对象,而thread_id则记录任意时刻获取的GIL的线程ID。

 /*
* Lock support. It has too be implemented as semaphores.
* I [Dag] tried to implement it with mutex but I could find a way to
* tell whether a thread already own the lock or not.
*/
PyThread_type_lock
PyThread_allocate_lock(void)
{
PNRMUTEX aLock; dprintf(("PyThread_allocate_lock called\n"));
if (!initialized)
PyThread_init_thread(); aLock = AllocNonRecursiveMutex() ; dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock)); return (PyThread_type_lock) aLock;
} typedef struct NRMUTEX {
LONG owned ;
DWORD thread_id ;
HANDLE hevent ;
} NRMUTEX, *PNRMUTEX ; PNRMUTEX
AllocNonRecursiveMutex(void)
{
PNRMUTEX mutex = (PNRMUTEX)malloc(sizeof(NRMUTEX)) ;
if (mutex && !InitializeNonRecursiveMutex(mutex))
{
free(mutex) ;
mutex = NULL ;
}
return mutex ;
} BOOL
InitializeNonRecursiveMutex(PNRMUTEX mutex)
{
mutex->owned = - ; /* No threads have entered NonRecursiveMutex */
mutex->thread_id = ;
mutex->hevent = CreateEvent(NULL, FALSE, FALSE, NULL) ;
return mutex->hevent != NULL ; /* TRUE if the mutex is created */
}

PyThread_acquire_lock尝试获取GIL代码如下:

void
PyEval_InitThreads(void)
{
if (interpreter_lock)
return;
interpreter_lock = PyThread_allocate_lock();
PyThread_acquire_lock(interpreter_lock, );
main_thread = PyThread_get_thread_ident();
}
/*
* Return 1 on success if the lock was acquired
*
* and 0 if the lock was not acquired. This means a 0 is returned
* if the lock has already been acquired by this thread!
*/
int
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
{
int success ; dprintf(("%ld: PyThread_acquire_lock(%p, %d) called\n", PyThread_get_thread_ident(),aLock, waitflag)); success = aLock && EnterNonRecursiveMutex((PNRMUTEX) aLock, (waitflag ? INFINITE : )) == WAIT_OBJECT_0 ; dprintf(("%ld: PyThread_acquire_lock(%p, %d) -> %d\n", PyThread_get_thread_ident(),aLock, waitflag, success)); return success;
}

Windown下调用系统的WaitForSingleObject

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, BOOL wait)
{
/* Assume that the thread waits successfully */
DWORD ret ; /* InterlockedIncrement(&mutex->owned) == 0 means that no thread currently owns the mutex */
if (!wait)
{
if (InterlockedCompareExchange(&mutex->owned, , -) != -)
return WAIT_TIMEOUT ;
ret = WAIT_OBJECT_0 ;
}
else
ret = InterlockedIncrement(&mutex->owned) ?
/* Some thread owns the mutex, let's wait... */
WaitForSingleObject(mutex->hevent, INFINITE) : WAIT_OBJECT_0 ; mutex->thread_id = GetCurrentThreadId() ; /* We own it */
return ret ;
}

Linux下则使用互斥锁metux和lock机制,条件等待机制一起使用。

先由本线程调用status = pthread_mutex_lock( &thelock->mut )锁住,mutex保持锁定状态,并在线程挂起进入等待前解锁。

然后status = pthread_cond_wait(&thelock->lock_released,&thelock->mut);

之后status = pthread_mutex_unlock( &thelock->mut );

条件满足从而离开pthread_cond_wait()之前,mutex加锁,以加锁动作对应。
激发条件有两种形式,pthread_cond_signal()激活一个等待该条件的线程,存在多个等待线程时按入队顺序激活其中一个;而pthread_cond_broadcast()则激活所有等待线程。
pthread_cond_wait解释:
int
PyThread_acquire_lock(PyThread_type_lock lock, int waitflag)
{
int success;
pthread_lock *thelock = (pthread_lock *)lock;
int status, error = ; dprintf(("PyThread_acquire_lock(%p, %d) called\n", lock, waitflag)); status = pthread_mutex_lock( &thelock->mut );
CHECK_STATUS("pthread_mutex_lock[1]");
success = thelock->locked == ; if ( !success && waitflag ) {
/* continue trying until we get the lock */ /* mut must be locked by me -- part of the condition
* protocol */
while ( thelock->locked ) {
status = pthread_cond_wait(&thelock->lock_released,
&thelock->mut);
CHECK_STATUS("pthread_cond_wait");
}
success = ;
}
if (success) thelock->locked = ;
status = pthread_mutex_unlock( &thelock->mut );
CHECK_STATUS("pthread_mutex_unlock[1]"); if (error) success = ;
dprintf(("PyThread_acquire_lock(%p, %d) -> %d\n", lock, waitflag, success));
return success;
}

Python GIL 多线程机制 (C source code)

python创建子线程过程:

多线程环境初始化之后,python开始创建底层平台的原生线程。主线程通过调用 thread_PyThread_start_new_thread-》PyThread_start_new_thread完成子线程的工作,返回子线程的ID。子线程的ID只有被激活才能从子线程中获取,因此主线程等待这个子线程的ID,一旦子线程设置好ID,就会设法唤醒主线程。至此,主线程和子线程开始分道扬镳。主线程在返回子线程ID之后,继续执行后续的字节码。

PyThread_start_new_thread传入的func是函数t_bootstrap,而arg则是bootstate结构体boot。而boot中保存着程序中所定义的线程信息。PyThread_start_new_thread首先将func和arg都打包到一个类型为callobj结构体中。

创建好子线程之后,其开始与主线程对GIL竞争。在t_bootstrap中调用PyEval_AcquireThread申请GIL,成功之后就申请到GIL,接下来子线程调用PyEval_CallObjectWithKeywords并最终调用我们熟悉的函数PyEval_EvalFrameEx,也就是python的字节码执行引擎。之后执行完毕,进行清理扫尾工作PyThreadState_DeleteCurrent释放GIL。

    t_bootstrap 看上去似乎子线程一直执行到释放GIL,他们是如何激活多线程机制的呢?答案在于函数PyEval_EvalFrameEx中,python内部维护的模拟中断时钟不断激活线程的调度机制,从而实现子线程和主线程的切换。

执行秩序: thread_PyThread_start_new_thread-》PyThread_start_new_thread-》bootstrap--》t_bootstrap  

t_bootstrap 代码:

static void
t_bootstrap(void *boot_raw)
{
struct bootstate *boot = (struct bootstate *) boot_raw;
PyThreadState *tstate;
PyObject *res; tstate = boot->tstate;
tstate->thread_id = PyThread_get_thread_ident();
_PyThreadState_Init(tstate);
PyEval_AcquireThread(tstate);
nb_threads++;
res = PyEval_CallObjectWithKeywords(
boot->func, boot->args, boot->keyw);
if (res == NULL) {
if (PyErr_ExceptionMatches(PyExc_SystemExit))
PyErr_Clear();
else {
PyObject *file;
PyObject *exc, *value, *tb;
PyErr_Fetch(&exc, &value, &tb);
PySys_WriteStderr(
"Unhandled exception in thread started by ");
file = PySys_GetObject("stderr");
if (file)
PyFile_WriteObject(boot->func, file, 0);
else
PyObject_Print(boot->func, stderr, 0);
PySys_WriteStderr("\n");
PyErr_Restore(exc, value, tb);
PyErr_PrintEx(0);
}
}
else
Py_DECREF(res);
Py_DECREF(boot->func);
Py_DECREF(boot->args);
Py_XDECREF(boot->keyw);
PyMem_DEL(boot_raw);
nb_threads--;
PyThreadState_Clear(tstate);
PyThreadState_DeleteCurrent();
PyThread_exit_thread();
}

完成打包之后,调用Win32下的创建thread API 函数CreateThread或者_beginthreadex ,然后通过bootstrap调用我们定义的函数(例如自己的test.py中的def testThread 函数)

函数打包,调用代码:

Python GIL 多线程机制 (C source code)

上一篇:Form 表单相关小技巧


下一篇:OpenLayers学习笔记5——使用jQuery UI实现查询并标注(UI篇)