在统计学中,滑动平均(英语:moving average)、滚动平均值,又称滑动平均是一种通过创建整个数据集中不同子集的一系列平均数来分析数据点的计算方法。它也是有限脉冲响应滤波器的一种。变化包括: 简单移动平均、指数移动平均、加权移动平均,以及累积移动平均(描述如下)。
给定一个数列和一个固定子集大小,移动平均数的第一个元素是由数列的初始固定子集的平均值得到的。然后通过“向前移位”修改子集,即排除序列的第一个数,并在子集中包含下一个值。
移动平均通常与时间序列数据一起使用,以消除短期波动,突出长期趋势或周期。短期和长期之间的阈值取决于应用,移动平均的参数将相应地设置。例如,它通常用于对财务数据进行技术分析,如股票价格、收益率或交易量。它也用于经济学中研究国内生产总值、就业或其他宏观经济时间序列。数学上,移动平均是卷积的一种类型,因此它可以被看作是用于信号处理的低通滤波器的一个例子。当与非时间序列数据一起使用时,移动平均滤波器的频率分量更高,但与时间没有任何特定的联系,尽管通常暗含某种排序。简单地看,它可以看作是把数据变得更平滑。
可以举一个例子:金融中的K线就是一种滑动平均
以下用MATLAB进行一定的解释
有某噪声数据如下
进行5点滑动平均
进行10点滑动平均
30点滑动平均
可以看到,传统意义上的滑动平均可以对原始数据进行平滑操作,过滤掉高频信号,但是会造成信号的延迟,如何通过算法近似消除这种时延,日后再讲