1.文字描述:
已知一颗二叉树的前序(后序)遍历序列和中序遍历序列,如何构建这棵二叉树?
以前序为例子:
前序遍历序列:ABCDEF
中序遍历序列:CBDAEF
前序遍历先访问根节点,因此前序遍历序列的第一个字母肯定就是根节点,即A是根节点;然后,由于中序遍历先访问左子树,再访问根节点,最后访问右子树,所以我们找到中序遍历中A的位置,然后A左边的字母就是左子树了,也就是CBD是根节点的左子树;同样的,得到EF为根节点的右子树。
将前序遍历序列分成BCD和EF,分别对左子树和右子树应用同样的方法,递归下去,二叉树就成功构建好了。如下图:
假如已知的是中序和后序遍历的序列,原理也一样。由于后序是先访问左子树,然后访问右子树,最后访问根节点,因此我们确定后序遍历序列的最后一个字母为根节点。其他步骤一样,用中序遍历序列找出两棵子树,再进行同样的操作。
2.代码实现:
(1)已知前序和中序:
Leetcode题目:
105 Construct Binary Tree from Preorder and Inorder Traversal(https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/description/)
代码:
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return buildTree(preorder, inorder, , preorder.size() - , , inorder.size() - );
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder, int preStart, int preEnd, int inStart, int inEnd) {
if (preStart > preEnd || inStart > inEnd) return NULL;
TreeNode *res;
res = new TreeNode(preorder[preStart]);
int flag;
for (int i = inStart; i <= inEnd; i++) {
if (preorder[preStart] == inorder[i]) {
flag = i;
break;
}
}
res->left = buildTree(preorder, inorder, preStart + , preStart + flag - inStart, inStart, flag - );
res->right = buildTree(preorder, inorder, preStart + flag - inStart + , preEnd, flag + , inEnd);
return res;
}
};
一开始我采用的做法是遇到的每棵子树都用新的vector数组来存放它的中序和前序遍历序列,但这样又浪费空间又增加时间,我们只要用原来的vector数组就可以了。
因此我们要用preStart,preEnd,inStart和inEnd来保存序列开始和结束的位置。比较容易得出的是inStart和inEnd这两个位置;难理解的是左子树的preEnd和右子树的preStart。但是我们求出左子树的preEnd后,只要加1就是右子树的preStart了。而要求左子树的preEnd我们可以通过中序来求出左子树的元素个数,然后就可以求出这个位置了。
(1)已知中序和后序:
Leetcode题目:
106 Construct Binary Tree from Inorder and Postorder Traversal(https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/description/)
代码:
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
return buildTree(inorder, postorder, , inorder.size() - , postorder.size() - , );
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder, int inStart, int inEnd, int postEnd, int postStart) {
if (inStart > inEnd || postEnd < postStart) {
return NULL;
}
int flag;
TreeNode *res = new TreeNode(postorder[postEnd]);
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == postorder[postEnd]) {
flag = i;
break;
}
}
res->left = buildTree(inorder, postorder, inStart, flag - , postStart - inStart + flag - , postStart);
res->right = buildTree(inorder, postorder, flag + , inEnd, postEnd - , postEnd - inEnd + flag);
return res;
}
};