比较简单的递推题目,只需要记录当前两种颜色均为偶数, 只有一种颜色为偶数 两种颜色都为奇数 三个数量即可,递推方程相信大家可以导出。
最后来个快速幂加速即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
typedef long long int LL;
const LL mt_MAXN=60;const LL mt_MAXM=60;
struct Matrix
{
LL n,m;
LL MOD;
LL a[mt_MAXN][mt_MAXM];
void clear()
{
n=m=0;
memset(a,0,sizeof(a));
}
Matrix operator +(const Matrix &b)const
{
Matrix tmp;
tmp.n=n;tmp.m=m;tmp.MOD=MOD;
for(LL i=0;i<n;++i)
for(LL j=0;j<m;++j)
tmp.a[i][j]=(a[i][j]+b.a[i][j])%MOD;
return tmp;
}
Matrix operator -(const Matrix &b)const
{
Matrix tmp;
tmp.n=n;tmp.m=m;tmp.MOD=MOD;
for(LL i=0;i<n;++i)
for(int j=0;j<m;++j)
tmp.a[i][j]=(a[i][j]-b.a[i][j]+MOD)%MOD;
return tmp;
}
Matrix operator *(const Matrix &b)const
{
Matrix tmp;
tmp.clear();
tmp.n=n;tmp.m=b.m;tmp.MOD=MOD;
for(LL i=0;i<n;++i)
for(LL j=0;j<b.m;++j)
for(LL k=0;k<m;++k)
tmp.a[i][j]=(tmp.a[i][j]+((a[i][k])*(b.a[k][j]))%MOD+MOD)%MOD;
return tmp;
} Matrix iden()
{
Matrix x;
memset(x.a,0,sizeof(x.a));
x.m=n;x.n=n;
x.MOD=MOD;
for(LL i=0;i<n;++i)
x.a[i][i]=1;
return x;
}
Matrix pow(LL t)
{
Matrix now;
now.n=n;now.m=m;now.MOD=MOD;
memset(now.a,0,sizeof(now.a));
for(LL i=0;i<n;++i)
for(LL j=0;j<m;++j)
now.a[i][j]=a[i][j];
for(LL i=1;i<t;i++)
now=now*now;
return now;
}
Matrix qpow(LL t)
{
if(n==0)return iden();
Matrix now;
now.clear();
now.n=n;now.m=m;now.MOD=MOD;
now=pow(1);
Matrix ans;
ans.clear();
ans.n=n;ans.m=m;ans.MOD=MOD;
ans=ans.iden();
while(true)
{
if(t%2==1)ans=ans*now;
t=t/2;
now=now*now;
if(t==0)break;
}
return ans;
}
}; int main()
{
int T;
scanf("%d",&T);
Matrix p;
p.clear();
p.n=p.m=3;
p.a[0][0]=2;p.a[0][1]=1;
p.a[1][0]=p.a[1][1]=p.a[1][2]=2;
p.a[2][1]=1;p.a[2][2]=2;
p.MOD=10007;
Matrix p0;
p0.clear();
p0.n=3;p0.m=1;
p0.a[0][0]=2;
p0.a[1][0]=2;
while(T--)
{
LL n;
scanf("%lld",&n);
Matrix pn=p.qpow(n-1);
Matrix ans=pn*p0;
printf("%lld\n",ans.a[0][0]);
}
return 0;
}