POJ 1390 Blocks(DP + 思维)题解

题意:有一排颜色的球,每次选择一个球消去,那么这个球所在的同颜色的整段都消去(和消消乐同理),若消去k个,那么得分k*k,问你消完所有球最大得分

思路:显然这里我们直接用二位数组设区间DP行不通,我们不能表示出“合并”这种情况。我们先把所有小块整理成连续的大块。

我们用click(l,r,len)表示消去l到r的所有大块和r后len块和r颜色一样的小块的最大得分。那么这样我们可以知道,click(l,r,len)只有两种情况:

1.r直接和后面len全都消去

2.r带着len先和前面的一样的颜色的一起消

代码:

#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
const int MOD = ;
int num[maxn], a[maxn], p[maxn], cnt;
int dp[maxn][maxn][maxn];
//j后还有k个一样的小块
int click(int l, int r, int len){
if(l > r) return ;
if(dp[l][r][len]) return dp[l][r][len];
if(l == r) return dp[l][r][len] = (num[l] + len) * (num[l] + len);
dp[l][r][len] = click(l, r - , ) + (num[r] + len) * (num[r] + len);
for(int i = l; i < r; i++){
if(p[i] != p[r]) continue;
dp[l][r][len] = max(dp[l][r][len], click(l, i, num[r] + len) + click(i + , r - , ));
}
return dp[l][r][len];
}
int main(){
int t, ca = ;
scanf("%d", &t);
while(t--){
int n;
scanf("%d", &n);
memset(num, , sizeof(num));
memset(dp, , sizeof(dp));
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
cnt = ;
a[] = -INF;
for(int i = ; i <= n; i++){
if(a[i] != a[i - ]){
++cnt;
num[cnt]++;
p[cnt] = a[i];
}
else{
num[cnt]++;
}
}
printf("Case %d: %d\n", ca++, click(, cnt, ));
}
return ;
}
上一篇:hdu 3389 Game 博弈论


下一篇:web框架开发-路由控制