题目描述
题解
之前做过一次
假设图建好了,设g[i]表示i->j(i<j)的个数
那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同
从n~1染色,点i的方案数是(n-g[i])
用线段树合并维护集合即可
code
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define min(a,b) (a<b?a:b)
#define mod 998244353
using namespace std;
int tr[4000001][4];
int n,m,i,j,k,l,x,y,len;
long long ans,sum;
void swap(int &x,int &y)
{
int z=x;
x=y;
y=z;
}
void New(int t,int x)
{
if (!tr[t][x])
{
tr[t][x]=++len;
tr[len][3]=n+1;
}
}
void change(int t,int l,int r,int x)
{
int mid=(l+r)/2;
++tr[t][2];
tr[t][3]=min(tr[t][3],x);
if (l==r)
return;
if (x<=mid)
{
New(t,0);
change(tr[t][0],l,mid,x);
}
else
{
New(t,1);
change(tr[t][1],mid+1,r,x);
}
}
int find(int t,int l,int r,int x,int y)
{
int sum=0,mid=(l+r)/2;
if (x<=l && r<=y)
return tr[t][2];
if (x<=mid)
{
if (tr[t][0])
sum+=find(tr[t][0],l,mid,x,y);
}
if (mid<y)
{
if (tr[t][1])
sum+=find(tr[t][1],mid+1,r,x,y);
}
return sum;
}
int Find(int t,int l,int r,int x)
{
int mid=(l+r)/2,ans=n+1,s;
if (x<=l) return tr[t][3];
if (tr[t][0] && x<=mid)
s=Find(tr[t][0],l,mid,x),ans=min(ans,s);
if (tr[t][1])
s=Find(tr[t][1],mid+1,r,x),ans=min(ans,s);
return ans;
}
void merge(int t1,int t2,int l,int r)
{
int mid=(l+r)/2;
if (l==r) return;
if (tr[t1][0] && tr[t2][0])
merge(tr[t1][0],tr[t2][0],l,mid);
else
if (tr[t2][0])
tr[t1][0]=tr[t2][0];
if (tr[t1][1] && tr[t2][1])
merge(tr[t1][1],tr[t2][1],mid+1,r);
else
if (tr[t2][1])
tr[t1][1]=tr[t2][1];
tr[t1][2]=tr[tr[t1][0]][2]+tr[tr[t1][1]][2];
tr[t1][3]=min(tr[tr[t1][0]][3],tr[tr[t1][1]][3]);
}
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
scanf("%d%d",&n,&m);
len=n;
fo(i,1,n)
tr[i][3]=n+1;
fo(i,1,m)
{
scanf("%d%d",&x,&y);
if (x>y) swap(x,y);
change(x,1,n,y);
}
tr[0][3]=n+1;
ans=n;
fo(i,1,n-1)
{
ans=(ans*(n-find(i,1,n,i+1,n)))%mod;
j=Find(i,1,n,i+1);
if (j<=n)
merge(j,i,1,n);
}
printf("%lld\n",ans);
fclose(stdin);
fclose(stdout);
return 0;
}