JittorSummary 工具使用说明

JittorSummary 工具使用说明

Jittor Summary Tool

清华大学算机系形学实验室提出了一个全新的深度学习框架——计图 (Jittor),它是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架。详情可见 Jittor官网。本博客介绍了从 torchsummary 迁移的 jittorsummary 工具的使用方法,源代码链接点击 此处。方便使用的话欢迎大家 Star!

1. 使用

  • git clone https://github.com/liuruiyang98/Jittor-summary.git
from jittorsummary import summary
summary(your_model, input_size=(channels, H, W), device='cpu')
  • input_size 需要保证网络能够正确前向推理。
  • jittorsummary 支持 cuda
    • device = ‘cpu’ ===> jt.flags.use_cuda = 0
    • device = ‘cuda’ ===> jt.flags.use_cuda = 1
  • 编写 jittorsummary 时 jittor 版本号为 1.2.2.34. 出于部分 jittor 开发原因,中间某些版本不可用。之后 jittor version >= 1.2.2.60 是可用的。

2. 样例

2.1 CNN for MNIST

import jittor as jt
from jittor import init
from jittor import nn
from jittorsummary import summary

class SingleInputNet(nn.Module):

    def __init__(self):
        super(SingleInputNet, self).__init__()
        self.conv1 = nn.Conv(1, 10, 5)
        self.conv2 = nn.Conv(10, 20, 5)
        self.conv2_drop = nn.Dropout(p=0.3)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def execute(self, x):
        x = nn.relu(nn.max_pool2d(self.conv1(x), 2))
        x = nn.relu(nn.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(((-1), 320))
        x = nn.relu(self.fc1(x))
        x = self.fc2(x)
        return nn.log_softmax(x, dim=1)
      
model = SingleInputNet()
summary(model, (1, 28, 28))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
              Conv-1           [-1, 10, 24, 24]             260
              Conv-2             [-1, 20, 8, 8]           5,020
           Dropout-3             [-1, 20, 8, 8]               0
            Linear-4                   [-1, 50]          16,050
            Linear-5                   [-1, 10]             510
    SingleInputNet-6                   [-1, 10]               0
================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.08
Estimated Total Size (MB): 0.15
----------------------------------------------------------------

2.2 Multiple Inputs

import jittor as jt
from jittor import init
from jittor import nn
from jittorsummary import summary

class MultipleInputNet(nn.Module):

    def __init__(self):
        super(MultipleInputNet, self).__init__()
        self.fc1a = nn.Linear(300, 50)
        self.fc1b = nn.Linear(50, 10)
        self.fc2a = nn.Linear(300, 50)
        self.fc2b = nn.Linear(50, 10)

    def execute(self, x1, x2):
        x1 = nn.relu(self.fc1a(x1))
        x1 = self.fc1b(x1)
        x2 = nn.relu(self.fc2a(x2))
        x2 = self.fc2b(x2)
        x = jt.contrib.concat((x1, x2), dim=0)
        return nn.log_softmax(x, dim=1)
      
model = MultipleInputNet()
summary(model, [(1, 300), (1, 300)])
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1                [-1, 1, 50]          15,050
            Linear-2                [-1, 1, 10]             510
            Linear-3                [-1, 1, 50]          15,050
            Linear-4                [-1, 1, 10]             510
  MultipleInputNet-5                [-1, 1, 10]               0
================================================================
Total params: 31,120
Trainable params: 31,120
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.34
Forward/backward pass size (MB): 0.00
Params size (MB): 0.12
Estimated Total Size (MB): 0.46
----------------------------------------------------------------

2.3 Multiple Ouputs

import jittor as jt
from jittor import init
from jittor import nn
from jittorsummary import summary

class MultipleOutputNet(nn.Module):
    def __init__(self):
        super(MultipleOutputNet, self).__init__()
        self.conv1 = nn.Conv(1, 10, 5)
        self.conv2 = nn.Conv(10, 20, 5)
        self.conv2_drop = nn.Dropout(p=0.3)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def execute(self, x):
        x = nn.relu(nn.max_pool2d(self.conv1(x), 2))
        x = nn.relu(nn.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(((- 1), 320))
        x = nn.relu(self.fc1(x))
        x = self.fc2(x)
        return nn.log_softmax(x, dim=1), x
     
model = MultipleOutputNet()
summary(model, (1, 28, 28))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
              Conv-1           [-1, 10, 24, 24]             260
              Conv-2             [-1, 20, 8, 8]           5,020
           Dropout-3             [-1, 20, 8, 8]               0
            Linear-4                   [-1, 50]          16,050
            Linear-5                   [-1, 10]             510
 MultipleOutputNet-6       [[-1, 10], [-1, 10]]               0
================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.08
Estimated Total Size (MB): 0.15
----------------------------------------------------------------

2.4 CUDA support

import jittor as jt
from jittor import init
from jittor import nn
from jittorsummary import summary

class SingleInputNet(nn.Module):

    def __init__(self):
        super(SingleInputNet, self).__init__()
        self.conv1 = nn.Conv(1, 10, 5)
        self.conv2 = nn.Conv(10, 20, 5)
        self.conv2_drop = nn.Dropout(p=0.3)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def execute(self, x):
        x = nn.relu(nn.max_pool2d(self.conv1(x), 2))
        x = nn.relu(nn.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(((-1), 320))
        x = nn.relu(self.fc1(x))
        x = self.fc2(x)
        return nn.log_softmax(x, dim=1)
      
model = SingleInputNet()
summary(model, (1, 28, 28), device='cuda')

2.5 Try more models

我提供了 UNet, UNet++Dense-UNet 的 pytorch 以及 jittor 实现。方便比较 torchsummaryjittorsummary 的运行结果。

|- jittorsummary
	|- tests
		|- test_models
			|- DenseUNet_jittor.py
			|- DenseUNet_pytorch.py
			|- NestedUNet_jittor.py
			|- NestedUNet_pytorch.py
			|- UNet_jittor.py
			|- UNet_pytorch.py

3. Pytorch-to-Jittor

References

最后的最后,欢迎移步github博客:liuruiyang98.github.io 查看更多信息!

上一篇:canva


下一篇:保姆级教程:图解Transformer