【BJOI2019】删数 线段树

题目大意:一个数列若能在有限次数内删空,则称这个数列可以删空,一次删除操作定义如下:

记当前数列长度为$k$,则删掉数列中所有等于$k$的数。

现在有一个长度为$n$的数列$a$,有$m$次修改操作,为单点变值/整体增加或者减少$1$,问每次修改后,最少需要修改序列中多少个数,使得序列可以被删除。

数据范围:$n≤150000$。

我们首先考虑下最少需要修改的次数,我们设$b[i]$为数列$a$中填写了i的值得数量。

对于每一个$i$,我们可以用$b[i]$这么多数,覆盖区间$[i-b[i]+1,i]$。最终的答案就是未被覆盖的格子数量。

证明显然。

基于这个结论,我们就可以在$O(n)$的复杂度内求出一个序列$a$对应的答案,可以获得47分的好成绩。

在只有单点修改的情况下,我们发现我们可以用线段树做一下维护,就可以获得60分的好成绩。

我们发现,整体的$+1$或者$-1$,可以转化为查询的区间出现了移动,移动完查询区间后,我们更新一下两端的值即可。

这么搞就可以过掉这一题了。

时间复杂度:$O(n\log\ n)$。

 #include<bits/stdc++.h>
#define M (1<<19)
using namespace std; struct seg{int l,r,tag,minn,cnt;}a[M<<];
void pushup(int x){
a[x].minn=min(a[x<<].minn,a[x<<|].minn);
a[x].cnt=(a[x].minn==a[x<<].minn?a[x<<].cnt:)+(a[x].minn==a[x<<|].minn?a[x<<|].cnt:);
}
void upd(int x,int k){a[x].minn+=k; a[x].tag+=k;}
void pushdown(int x){if(a[x].tag) upd(x<<,a[x].tag),upd(x<<|,a[x].tag); a[x].tag=;} void build(int x,int l,int r){
a[x].l=l; a[x].r=r; if(l==r) return void(a[x].cnt=);
int mid=(l+r)>>;
build(x<<,l,mid); build(x<<|,mid+,r);
pushup(x);
}
void updata(int x,int l,int r,int k){
if(l<=a[x].l&&a[x].r<=r) return upd(x,k);
pushdown(x); int mid=(a[x].l+a[x].r)>>;
if(l<=mid) updata(x<<,l,r,k);
if(mid<r) updata(x<<|,l,r,k);
pushup(x);
}
void updata(int x,int id,int k){return updata(x,id,id,k);}
int query(int x,int l,int r){
if(a[x].minn>) return ;
if(l<=a[x].l&&a[x].r<=r) return a[x].cnt;
pushdown(x); int mid=(a[x].l+a[x].r)>>,cnt=;
if(l<=mid) cnt+=query(x<<,l,r);
if(mid<r) cnt+=query(x<<|,l,r);
return cnt;
} int num[M],n,q,m,orzorz[M*]={};
int *cnt=orzorz+M;
int main(){
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++) scanf("%d",num+i),cnt[num[i]]++;
int T=max(n,q),m=T+n+q+,move=;
build(,,m);
for(int i=;i<=n;i++) updata(,T+i-cnt[i]+,T+i,);
while(q--){
int p,x; scanf("%d%d",&p,&x);
if(p>){
x-=move;
if(num[p]+move>=&&num[p]+move<=n)
updata(,num[p]-cnt[num[p]]++T,-);
cnt[num[p]]--; num[p]=x; cnt[num[p]]++;
updata(,num[p]-cnt[num[p]]++T,);
}else{
if(x<) move--;
updata(,-move-cnt[-move]++T,-move+T,x);
updata(,n-move-cnt[n-move]++T,n-move+T,-x);
if(x>) move++;
}
printf("%d\n",query(,T-move+,T-move+n));
}
}
上一篇:git宝典—应付日常工作使用足够的指北手册


下一篇:HTML5 用canvas画吃豆人