AES加密和解密C++实现

#include<bits/stdc++.h>

using namespace std;
mt19937 rnd(chrono::system_clock::now().time_since_epoch().count());
const int N = 4, T = 10, P = 283;
const int S[1 << 4][1 << 4] = {
        {0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,},
        {0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,},
        {0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,},
        {0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,},
        {0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,},
        {0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,},
        {0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,},
        {0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,},
        {0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,},
        {0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,},
        {0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,},
        {0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,},
        {0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,},
        {0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,},
        {0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,},
        {0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16}
};
const int S_1[1 << 4][1 << 4] = {
        {0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,},
        {0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,},
        {0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,},
        {0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,},
        {0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,},
        {0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,},
        {0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,},
        {0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,},
        {0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,},
        {0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,},
        {0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,},
        {0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,},
        {0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,},
        {0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,},
        {0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,},
        {0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D}
};
const int G[N][N]{{0x02, 0x03, 0x01, 0x01},
                  {0x01, 0x02, 0x03, 0x01},
                  {0x01, 0x01, 0x02, 0x03},
                  {0x03, 0x01, 0x01, 0x02}};
const int G_1[N][N] = {{0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E}};
static const unsigned int Rcon[10] = {
        0x01000000UL,
        0x02000000UL,
        0x04000000UL,
        0x08000000UL,
        0x10000000UL,
        0x20000000UL,
        0x40000000UL,
        0x80000000UL,
        0x1B000000UL,
        0x36000000UL
};
int a[N][N], b[N][N], tmp[N];
unsigned int K[11][4];

inline int GMul(int x, int y) {
    int res = 0;
    for (int i = 0; i < 8; i++, x <<= 1)
        if (y >> i & 1)res ^= x;
    while (__lg(res) >= 8)res ^= P << (__lg(res) - 8);
    return res;
}

inline void KeyExpansion() {
    for (int i = 1; i <= 10; i++) {
        unsigned int t = 0;
        for (int j = 24, k = 1; k <= 4; j = (j + 8) % 32, k++)
            t |= S[(K[i - 1][3] >> (j + 4)) & ((1 << 4) - 1)][(K[i - 1][3] >> j) & ((1 << 4) - 1)] << ((j + 8) % 32);
        K[i][0] = K[i - 1][0] ^ Rcon[i - 1] ^ t;
        for (int j = 1; j < 4; j++)K[i][j] = K[i - 1][j] ^ K[i][j - 1];
    }
}

inline void SubByte() {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            a[i][j] = S[a[i][j] >> 4][a[i][j] & ((1 << 4) - 1)];
}

inline void InvSubByte() {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            a[i][j] = S_1[a[i][j] >> 4][a[i][j] & ((1 << 4) - 1)];
}

inline void ShiftRow() {
    for (int i = 0; i < N; i++) {
        memcpy(tmp, a[i], sizeof(tmp));
        for (int j = 0; j < N; j++)
            a[i][j] = tmp[(j + i) % N];
    }
}

inline void InvShiftRow() {
    for (int i = 0; i < N; i++) {
        memcpy(tmp, a[i], sizeof(tmp));
        for (int j = 0; j < N; j++)
            a[i][j] = tmp[(j - i + N) % N];
    }
}

inline void MixColumn() {
    memset(b, 0, sizeof(b));
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            for (int k = 0; k < N; k++)
                b[i][j] ^= GMul(a[k][j], G[i][k]);
    memcpy(a, b, sizeof(a));
}

inline void InvMixColumn() {
    memset(b, 0, sizeof(b));
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            for (int k = 0; k < N; k++)
                b[i][j] ^= GMul(a[k][j], G_1[i][k]);
    memcpy(a, b, sizeof(a));
}

inline void AddRoundKey(int u) {
    for (int i = 0; i < N; i++)
        for (int j = 0, k = 24; j < N; j++, k -= 8)
            a[i][j] ^= (K[u][i] >> k) & ((1 << 8) - 1);
}

inline void Encryption() {
    KeyExpansion();
    AddRoundKey(0);
    for (int i = 1; i < T; i++) {
        SubByte();
        ShiftRow();
        MixColumn();
        AddRoundKey(i);
    }
    SubByte();
    ShiftRow();
    AddRoundKey(T);
}

inline void Decryption() {
    KeyExpansion();
    AddRoundKey(T);
    for (int i = T - 1; i >= 1; i--) {
        InvShiftRow();
        InvSubByte();
        AddRoundKey(i);
        InvMixColumn();
    }
    InvSubByte();
    InvShiftRow();
    AddRoundKey(0);
}

inline void out() {
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            for (int k = 7; k >= 0; k--)
                printf("%d", a[i][j] >> k & 1);
            putchar(' ');
        }
        puts("");
    }
}

int main() {
    for (int i = 0; i < N; i++)K[0][i] = rnd() % UINT32_MAX;
    puts("密钥:");
    for (int i = 0; i < N; i++) {
        for (int j = 31; j >= 0; j -= 8) {
            for (int k = 0; k < 8; k++)
                printf("%d", K[0][i] >> (j - k) & 1);
            putchar(' ');
        }
        puts("");
    }
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            a[i][j] = rnd() % (1 << 8);
    puts("原文:"), out();
    Encryption();
    puts("密文:"), out();
    Decryption();
    puts("原文:"), out();
    return 0;
}

运行结果:

密钥:
00101001 10110001 01100010 10110101
00000111 11111011 00110011 01110110
10010001 10110011 01110000 10111000
01011011 01010111 10000001 00011100
原文:
11111011 10001010 10111000 01000101
11011101 01110000 11110111 10101101
10101011 01011000 00100101 01001111
00000011 10101101 00001100 11101010
密文:
00110100 10111001 11010001 00011011
11101100 01101111 00111010 11000101
00101111 10010100 00010100 10111100
00001001 10011111 01101111 10011001
原文:
11111011 10001010 10111000 01000101
11011101 01110000 11110111 10101101
10101011 01011000 00100101 01001111
00000011 10101101 00001100 11101010
上一篇:三天搞定射频识别技术(三)3.3PN532数据帧


下一篇:[GWCTF 2019]pyre 1