例12:一只游船上有800(1000)人,一名游客不慎患传染病,12(10)小时后有3人发病,由于船上不能及时隔离,问经过60(30)小时,72小时,患此病的人数。(与人口模型和Logistic模型类似)
先用python和matlab模拟
我的python代码
# -*- coding: utf-8 -*-
import numpy as np
import random
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import pandas as pd
import matplotlib.pyplot as plt p_size=10000
get_ill_p = 0.1 is_ill = np.zeros(p_size)
is_ill[0]=1
ill_n =1
x=[]
y=[]
for time in range(100):
x.append(time)
y.append(ill_n)
# 遍历每一个交往的人数
for i in range(ill_n):
# 交往的人数再0-2个人内
renshu = np.random.randint(0,2)
for j in range(renshu):
# 随机挑一个人
p = np.random.randint(0,p_size)
# 如果p没患病
if is_ill[p]==0 and random.random()<0.5:
is_ill[p]=1
ill_n += 1
plt.plot(x,y)
我的matlab代码
clear;
p_size=10000;
get_ill_p = 0.1; is_ill = zeros(1,p_size);
is_ill(1)=1;
ill_n =1;
y(1)=1;
for time =1:150
y(time)=ill_n;
% 遍历每一个交往的人数
for i =1:ill_n
% 交往的人数再0-2个人内
renshu = randperm(2,1); % 产生0到2内的随机整数
for j =1:renshu
% 随机挑一个人
p = randperm(p_size,1); % 产生0到p_size内的随机整数
% 如果p没患病
if is_ill(p)==0 && rand(1)<get_ill_p
is_ill(p)=1;
ill_n = ill_n+ 1;
end
end
end
end
plot(y,'o');
老师的matlab代码1
clear
d=800; %%%总的患病人数。
y=ones(1,d);%%%“1”表示健康的人。
y(1)=0; %%%第1个人患病了。 for n=1:240 %%%考虑200个时间单位后的情况。
y=y(randperm(d)); %%%将y的顺序打乱。
z=[y(2:d)];z(d)=y(1); %%%考虑 y 后面一个人, 最后一个人的后面拟定为第一个人。
%%%每一个人可随机与另一个人接触,在一维中足够可表达这个意思.
R=find((y==0)&z==1); %%%找出患者即将传染的人。只有健康的人才会成为新的患者。
for k=1:size(R,2) %%%size(R,2)为第 n 个单位时间的总的“传播机会”.
w=randperm(15);p=(w(1)>=2); %%%不是只要一个健康的人接触患者就会成为病人的。传染病有感染程度的不同。
z(R(k))=1.*p;
end
y=z; %%%经过一个时段后新的分布产生了。
s(n)=numel(find(z==0)); %%%计算总的患病人数。
end
s;plot(s) %%%画出患病人数曲线图。
老师的matlab代码2
clear
t=1:240;
y=800./(1+799.*exp(-0.09176.*t));
plot(y)
老师的matlab代码3
clear
d=800; %%%总的患病人数。
y=ones(1,d);%%%“1”表示健康的人。
y(1)=0; %%%第1个人患病了。 for n=1:240 %%%考虑200个时间单位后的情况。
y=y(randperm(d)); %%%将y的顺序打乱。
z=[y(2:d)];z(d)=y(1); %%%考虑 y 后面一个人, 最后一个人的后面拟定为第一个人。
%%%每一个人可随机与另一个人接触,在一维中足够可表达这个意思.
R=find((y==0)&z==1); %%%找出患者即将传染的人。只有健康的人才会成为新的患者。
for k=1:size(R,2) %%%size(R,2)为第 n 个单位时间的总的“传播机会”.
w=randperm(15);p=(w(1)>=2); %%%不是只要一个健康的人接触患者就会成为病人的。传染病有感染程度的不同。
z(R(k))=1.*p;
end
y=z; %%%经过一个时段后新的分布产生了。
s(n)=numel(find(z==0)); %%%计算总的患病人数。
end
s;plot(s) %%%画出患病人数曲线图。
s(72)
老师的matlab代码4
clear
d=800; %%%总的患病人数。
y=ones(1,d);%%%“1”表示健康的人。
y(1)=0; %%%第1个人患病了。 for n=1:240 %%%考虑200个时间单位后的情况。
y=y(randperm(d)); %%%将y的顺序打乱。
z=[y(2:d)];z(d)=y(1); %%%考虑 y 后面一个人, 最后一个人的后面拟定为第一个人。
%%%每一个人可随机与另一个人接触,在一维中足够可表达这个意思.
R=find((y==0)&z==1); %%%找出患者即将传染的人。只有健康的人才会成为新的患者。
for k=1:size(R,2) %%%size(R,2)为第 n 个单位时间的总的“传播机会”.
w=randperm(11);p=(w(1)>=2); %%%不是只要一个健康的人接触患者就会成为病人的。传染病有感染程度的不同。
z(R(k))=1.*p;
end
y=z; %%%经过一个时段后新的分布产生了。
s(n)=numel(find(z==0)); %%%计算总的患病人数。
end
s;plot(s) %%%画出患病人数曲线图。
s(72)