Unusual Matrix
You are given two binary square matrices a and b of size n×n. A matrix is called binary if each of its elements is equal to 0 or 1. You can do the following operations on the matrix a arbitrary number of times (0 or more):
- vertical xor. You choose the number j (1≤j≤n) and for all i (1≤i≤n) do the following: \(a_{i,j}:=ai,j⊕1\) (⊕ — is the operation xor (exclusive or)).
- horizontal xor. You choose the number i (1≤i≤n) and for all j (1≤j≤n) do the following: \(ai,j:=ai,j⊕1\).
Note that the elements of the a matrix change after each operation.
For example, if n=3 and the matrix a is:
\[\begin{pmatrix}1&1&0\\0&0&1\\1&1&0\end{pmatrix} \]Then the following sequence of operations shows an example of transformations:
-
vertical xor, j=1.
\[a=\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix} \] -
horizontal xor,i=2.
\[a=\begin{pmatrix}0&1&0\\0&1&0\\0&1&0\end{pmatrix} \] -
vertical xor, j=2.
\[a=\begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix} \]
Check if there is a sequence of operations such that the matrix a becomes equal to the matrix b.
Input
The first line contains one integer t (1≤t≤1000) — the number of test cases. Then t test cases follow.
The first line of each test case contains one integer n (1≤n≤1000) — the size of the matrices.
The following n lines contain strings of length n, consisting of the characters '0' and '1' — the description of the matrix a.
An empty line follows.
The following n lines contain strings of length n, consisting of the characters '0' and '1' — the description of the matrix b.
It is guaranteed that the sum of n over all test cases does not exceed 1000.
Output
For each test case, output on a separate line:
- "YES", there is such a sequence of operations that the matrix a becomes equal to the matrix b;
- "NO" otherwise.
Example
input
3
3
110
001
110
000
000
000
3
101
010
101
010
101
010
2
01
11
10
10
output
YES
YES
NO
Note
The first test case is explained in the statements.
In the second test case, the following sequence of operations is suitable:
- horizontal xor, i=1;
- horizontal xor, i=2;
- horizontal xor, i=3;
It can be proved that there is no sequence of operations in the third test case so that the matrix a becomes equal to the matrix b.
设p[i]: 第i行异或次数, p[n+j]第j列异或次数
显然\(b[ i][j]=p[i]\oplus p[n+j]\oplus a[i][j]\)
有2n个变量,可以列出n*n个等式
可以发现,如果确定了\(p[n+n]\),则可以确定其余所有的p[i]
不过只满足其中2n-1个等式
\(p[i]=a[i][n]\oplus b[i][n]\oplus p[n+n]\)
\(p[n+j]=a[n][n]\oplus b[n][n]\oplus a[n][j]\oplus b[n][j]\oplus p[n+n]\)
最后验证所有的等式,如果p[n+n]修改次数超过1次,则无解
int n,m,k;
char a[MAXN][MAXN],b[MAXN][MAXN];
int p[MAXN*2];
int main(){
int t;read(t);
while(t--){
read(n);
for(int i=1;i<=n;++i)read(a[i]+1);
for(int i=1;i<=n;++i)read(b[i]+1);
for(int i=1;i<=n;++i){
p[i]=(a[i][n]-48)^(b[i][n]-48);
}
for(int j=1;j<=n;++j){
p[n+j]=(a[n][j]-48)^(b[n][j]-48)^(a[n][n]-48)^(b[n][n]-48);
}
int f=0,chd=0;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
int k1=p[i]^p[n+j];
int k2=(a[i][j]-48)^(b[i][j]-48);
if(k1^f!=k2){
f^=1;
chd++;
}
}
}
if(chd<=1){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}