记一下日常见到的一些奇怪的 Markdown / LaTeX 用法...
Markdown
LaTeX
LaTeX 数学
1. 运算符
1.1 造运算符:
a \operatorname{sin} c
| \(a \operatorname {sin} c\)
2. 特殊符号
2.1 点
语义的点:
-
\dotsc
for “dots with commas” | \(a \dotsc b\) -
\dotsb
for “dots with binary operators/relations” | \(a \dotsb b\) -
\dotsm
for “multiplication dots” | \(a \dotsm b\) -
\dotsi
for “dots with integrals” | \(a \dotsi b\) -
\dotso
for “other dots” (none of the above) | \(a \dotso b\) -
\dots
output the most suitable form based on the immediate context-
a \dots b
| \(a \dots b\) -
a + \dots + b
| \(a + \dots + b\) -
\int_{a_1}\int_{a_2} \dots \int_{a_n}
| \(\int_{a_1}\int_{a_2} \dots \int_{a_n}\)
-
位置的点:
-
\cdots
| \(a \cdots b\) -
\vdots
| \(a \vdots b\) -
\ddots
| \(a \ddots b\) -
\ldots
| \(a \ldots b\)
For example:
M
=\begin{bmatrix}
A & B & \cdots\ &C\\
D & E & \cdots\ & F\\
\vdots & \vdots & \ddots & \vdots \\
G & H & \cdots\ & I\\
\end{bmatrix}
\[M
=\begin{bmatrix}
A & B & \cdots\ &C\\
D & E & \cdots\ & F\\
\vdots & \vdots & \ddots & \vdots \\
G & H & \cdots\ & I\\
\end{bmatrix}
\]
=\begin{bmatrix}
A & B & \cdots\ &C\\
D & E & \cdots\ & F\\
\vdots & \vdots & \ddots & \vdots \\
G & H & \cdots\ & I\\
\end{bmatrix}
\]
2.2 分数/二项式系数
\(\TeX\) style:
-
{a \over b}
| \({a \over b}\) -
{a \atop b}
| \({a \atop b}\) -
{a \choose b}
| \({a \choose b}\) -
{a \brack b}
| \({a \brack b}\) -
{a \brace b}
| \({a \brace b}\) - generate:
-
{a \above dimension(nullable) b}
- dimension:
xpt
;0.4pt
as default;0pt
hide -
{a \above 0.5pt b}
| \({a \above 0.5pt b}\) -
{a \above {} b}
| \({a \above {} b}\) (error in mathjax...)
- dimension:
-
\(\LaTeX\) style:
\frac ab
| \(\frac ab\)\binom ab
| \(\binom ab\)-
generate:
{\genfrac leftdelimiter rightdelimiter dimension style numerator denominator}
- leftdelimiter, rightdelimiter, dimension, style, numerator, denominator are all nullable, you could use
{}
instead- style (nullable):
- 0 denotes
\displaystyle
- 1 denotes
\textstyle
- 2 denotes
\scriptstyle
- 3 denotes
\scriptscriptstyle
- 0 denotes
-
\genfrac(]{0pt}{2}{a+b}{c+d}
| \(\genfrac(]{0pt}{2}{a+b}{c+d}\) -
\genfrac{}{}{0pt}{}{a+b}{c+d}
| \(\genfrac{}{}{0pt}{}{a+b}{c+d}\)
- style (nullable):
-
other:
-
\dfrac
: fraction in the display style | \(\dfrac ab\) -
\tfrac
: fraction in the text style | \(\tfrac ab\)
-