A题
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
//1MB = 1024KB 1KB = 1024B 1B = 8bit
int main(){
cout<< 256 * 1024 * 1024 / (32/8)<<endl;
return 0;
}
//67108864
B题
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int s[10];
bool check(int x)
{
while (x)
{
s[x%10] -= 1;
x = x / 10;
}
for (int i = 0; i < 10; i ++ )
if (s[i] < 0)
return false;
return true;
}
int main(){
for (int i = 0; i < 10; i ++ ) s[i] = 2021;
for (int i = 0; ; i ++ )
{
if (!check(i))
{
cout<< i - 1;
return 0;
}
}
return 0;
}
//3181
C题
思路:数据量较小,四重循环暴力枚举,然后计算斜率和截距。合理的使用结构体存储以及定义重载和cmp规则排序。需要注意对于斜率无穷的直线特判(垂直x轴)。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
//判断两个实数是否相等:若fabs(x1-x2)<1e-8则相等。
using namespace std;
const int N = 200000;
int n;
struct Line
{
double k , b;
// bool operator< (const Line& t) const
// {
// if (k != t.k) return k < t.k;
// return b < t.b;
// }
}l[N];
bool cmp(Line x,Line y)
{
if (x.k != y.k) return x.k < y.k;
return x.b < y.b;
}
int main(){
for (int x1 = 0; x1 < 20; x1 ++ )
for (int y1 = 0; y1 < 21; y1 ++ )
for (int x2 = 0; x2 < 20; x2 ++ )
for (int y2 = 0; y2 < 21; y2 ++ )
if (x1 != x2)
{
double k = (double)(y2 - y1) / (x2 - x1);
double b = y1 - k * x1;
l[n ++ ] = {k, b};
}
sort(l,l + n,cmp);
int res = 1;//为什么是1?因为下面从1开始循环。默认第一个和其他不同。
for (int i = 1; i < n; i ++ )
if (fabs(l[i].k - l[i - 1].k) > 1e-8 || fabs(l[i].b - l[i - 1].b) > 1e-8)
res ++ ;
cout<< res + 20 << endl;
return 0;
}
//40257
D题
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
typedef long long LL;
int main(){
LL n;
n = 2021041820210418;
vector<LL> d;
for (LL i = 1; i * i < n; i ++ )
if (n % i == 0)
{
d.push_back(i);
if (n / i != i ) d.push_back(n / i);
}
int res = 0;
for (auto a : d)
for (auto b : d)
for (auto c : d)
{
if (a * b * c == n)
res ++ ;
}
cout << res << endl;
return 0;
}
//2430
E题
裸的最短路问题,用SPFA、Dijkstra算法、Floyd(O(n^3),大概需要跑一分钟)。
没有背板子哭了。Y总用的SPFA,表示没学过。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2200, M = N * 50;
int n;
int h[N], e[M], w[M], ne[M], idx;
int q[N], dist[N];
bool st[N];
int gcd(int a, int b) // 欧几里得算法
{
if(b == 0) return a;
return gcd(b, a % b);
}
void add(int a, int b, int c) // 添加一条边a->b,边权为c
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void spfa() // 求1号点到n号点的最短路距离
{
int hh = 0, tt = 0;
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
q[tt ++ ] = 1;
st[1] = true;
while (hh != tt)
{
int t = q[hh ++ ];
if (hh == N) hh = 0;
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q[tt ++ ] = j;
if (tt == N) tt = 0;
st[j] = true;
}
}
}
}
}
int main()
{
n = 2021;
memset(h, -1, sizeof h);
for (int i = 1; i <= n; i ++ )
for (int j = max(1, i - 21); j <= min(n, i + 21); j ++ )
{
int d = gcd(i, j);
add(i, j, i * j / d);
}
spfa();
printf("%d\n", dist[n]);
return 0;
}
//10266837
F题
AcWing 3416 时间显示
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int D = 86400000;
const int H = 3600000;
const int M = 60000;
const int S = 1000;
int hh,mm,ss;
int main()
{
LL n;
cin >> n;
n = n % D;
hh = n / H;
n = n % H;
mm = n / M;
n = n % M;
ss = n / S;
printf("%02d:%02d:%02d",hh,mm,ss);
}
G题
AcWing 3417 砝码称重
背包问题