5 seconds
256 megabytes
standard input
standard output
You are given a permutation of the numbers 1, 2, ..., n and m pairs of positions (aj, bj).
At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get?
Let p and q be two permutations of the numbers 1, 2, ..., n. p is lexicographically smaller than the q if a number 1 ≤ i ≤ n exists, so pk = qk for 1 ≤ k < i and pi < qi.
The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the length of the permutation p and the number of pairs of positions.
The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.
Each of the last m lines contains two integers (aj, bj) (1 ≤ aj, bj ≤ n) — the pairs of positions to swap. Note that you are given a positions, not the values to swap.
Print the only line with n distinct integers p'i (1 ≤ p'i ≤ n) — the lexicographically maximal permutation one can get.
9 6
1 2 3 4 5 6 7 8 9
1 4
4 7
2 5
5 8
3 6
6 9
7 8 9 4 5 6 1 2 3 思路:可以先将所有可以交换的区间用并查集合并,然后用多个大根堆维护并查集的根可以的数字,最后只需依次将根可以的最小数字放到数组中即可,放一个数字则删除根元素。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
priority_queue<int> ans[];
int n,m,p[],father[];
int ask(int x)
{
if (father[x]==x) return x;
father[x]=ask(father[x]);
return father[x];
}
void hebin(int x,int y)
{
int p=ask(x);
int q=ask(y);
if (p!=q) father[p]=q;
}
int main()
{
scanf("%d%d",&n,&m);
int i;
for (i=;i<=n;i++)
{
scanf("%d",&p[i]);
father[i]=i;
}
while (m--)
{
int x,y;
scanf("%d%d",&x,&y);
hebin(x,y);
}
for (i=;i<=n;i++) ans[father[ask(i)]].push(p[i]);
for (i=;i<=n;i++)
{
printf("%d ",ans[father[i]].top());
ans[father[i]].pop();
}
return ;
}