Description
Input
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
Output
对于每一个第一类操作,输出一个非负整数表示答案。
Sample Input
Q Q
Q
L
L L
Q Q
Sample Output
HINT
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
Solution
时限比较长暗示此题的解法比较暴力
和前面count on a tree的做法一样,先遍历整片森林,初始化倍增数组,把点投到可持久化线段树里去
对于询问操作,一样地,直接递归求解即可
对于连接操作,我们用并查集加size域启发式合并来处理森林的联通状况,方便我们重构树的时候减少重构的点的数量,这样就优化了暴力重构的时间
#include<stdio.h>
#include<string.h>
#define N 80110
#define INF 1000000000
#define mid ((x>>1)+(y>>1)+(x&y&1))
inline void exc(int &x,int &y){
x^=y;y^=x;x^=y;
}
inline int Rin(){
int x=,c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
return x*f;
}
int n,m,T,val[N],jump[N][],dep[N],pb[N],top,ans;
struct st{int f,s;}s[N];
inline int pre(int x){
while(s[x].f^x)x=s[x].f;
return x;
}
inline void onion(int x,int y){
x=pre(x),y=pre(y);
s[y].f=x,s[x].s+=s[y].s;
}
struct pt{int v;pt *nxt;}
*fst[N],e[N<<],*tot=e;
inline void link(int x,int y){
*++tot=(pt){y,fst[x]},fst[x]=tot;
*++tot=(pt){x,fst[y]},fst[y]=tot;
}
struct nt{
nt *l,*r;
int s;
}*rt[N],pool[],*C=pool;
inline nt *newnt(nt *_,nt *__,int ___){
C->l=_;C->r=__;C->s=___;
return C++;
}
nt *build(nt *p,int x,int y,int k){
if(!(x^y))return newnt(0x0,0x0,p->s+);
if(k<=mid)return newnt(build(p->l,x,mid,k),p->r,p->s+);
return newnt(p->l,build(p->r,mid+,y,k),p->s+);
}
void dfs(int x){
dep[x]=dep[jump[x][]]+;
rt[x]=build(rt[jump[x][]],,INF,val[x]);
for(pt *j=fst[x];j;j=j->nxt)
if(j->v^jump[x][])
jump[j->v][]=x,
dfs(j->v);
}
void dfs(int x,int f){
pb[++top]=x;
jump[x][]=f;
dep[x]=dep[f]+;
rt[x]=build(rt[f],,INF,val[x]);
for(pt *j=fst[x];j;j=j->nxt)
if(j->v^f)dfs(j->v,x);
}
int lca(int x,int y){
if(dep[x]<dep[y])exc(x,y);
for(int j=;~j;j--)
if(dep[jump[x][j]]>=dep[y])
x=jump[x][j];
if(!(x^y))return x;
for(int j=;~j;j--)
if(jump[x][j]^jump[y][j])
x=jump[x][j],y=jump[y][j];
return jump[x][];
}
int secret(nt *p1,nt *p2,nt *p3,nt *p4,int x,int y,int k){
if(!(x^y))return x;
int c=p1->l->s+p2->l->s-p3->l->s-p4->l->s;
if(k<=c)return secret(p1->l,p2->l,p3->l,p4->l,x,mid,k);
return secret(p1->r,p2->r,p3->r,p4->r,mid+,y,k-c);
}
int feel(int x,int y,int k){
int t=lca(x,y);
return secret(rt[x],rt[y],rt[t],rt[jump[t][]],,INF,k);
}
int main(){
T=Rin(),n=Rin(),m=Rin(),T=Rin();
for(int i=;i<=n;i++)
s[i].f=i,s[i].s=;
for(int i=;i<=n;i++)
val[i]=Rin();
for(int x,y;m;m--)
x=Rin(),y=Rin(),link(x,y),onion(x,y);
rt[]=newnt(C,C,);
for(int i=;i<=n;i++)
if(!jump[i][])
dfs(i);
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
jump[i][j]=jump[jump[i][j-]][j-];
char sign[];
for(int x,y,k;T;T--){
scanf("%s",sign);
x=Rin()^ans,y=Rin()^ans;
if(sign[]=='Q'){
k=Rin()^ans;
printf("%d\n",ans=feel(x,y,k));
}
else{
if(s[pre(x)].s>s[pre(y)].s)
exc(x,y);
top=;
dfs(x,y);
onion(x,y);
for(int j=;j<=;j++)
for(int i=;i<=top;i++)
jump[pb[i]][j]=jump[jump[pb[i]][j-]][j-];
link(x,y);
}
}
return ;
}