传送门
网络流好题。
这道题可以动态建图。
不难想到把每个球iii都拆点成i1i_1i1和i2i_2i2,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1),(i2,t),如果(u,v)(u,v)(u,v)可以匹配的话就连边(u1,v2)(u_1,v_2)(u1,v2),然后用最大流检验,如果能流动说明不用加柱子,否则需要新加一个柱子。
题目还要求输出方案。
那么我们在dfsdfsdfs的时候更新后继就可以了。
代码:
#include<bits/stdc++.h>
#define N 50005
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
struct edge{int v,c,next;};
int n,ans,tot,bg[60],nxt[N];
bool vis[N];
struct Dinic{
int first[N],cur[N],cnt,d[N],s,t;
edge e[N<<1];
inline void init(){s=0,t=N-1,memset(first,-1,sizeof(first)),cnt=-1;}
inline void addedge(int u,int v,int c){e[++cnt].v=v,e[cnt].c=c,e[cnt].next=first[u],first[u]=cnt;}
inline void add(int u,int v,int c){addedge(u,v,c),addedge(v,u,0);}
inline bool bfs(){
queue<int>q;
memset(d,-1,sizeof(d)),d[s]=0,q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=first[x];~i;i=e[i].next){
int v=e[i].v;
if(~d[v]||!e[i].c)continue;
d[v]=d[x]+1,q.push(v);
}
}
return ~d[t];
}
inline int dfs(int p,int f){
if(p==t)return f;
int flow=f;
for(int&i=cur[p];~i;i=e[i].next){
int v=e[i].v;
if(!flow)break;
if(e[i].c&&d[v]==d[p]+1){
int tmp=dfs(v,min(flow,e[i].c));
if(v!=t)nxt[p>>1]=v>>1;
if(!tmp)d[v]=-1;
e[i].c-=tmp,e[i^1].c+=tmp,flow-=tmp;
}
}
return f-flow;
}
inline int solve(){
int ret=0;
while(bfs())memcpy(cur,first,sizeof(first)),ret+=dfs(s,0x3f3f3f3f);
return ret;
}
}dinic;
int main(){
n=read(),ans=0,tot=0,dinic.init();
while(tot<=n){
++ans,dinic.add(dinic.s,ans*2,1),dinic.add(ans*2+1,dinic.t,1);
for(int i=sqrt(ans)+1;i*i<ans*2;++i)dinic.add((i*i-ans)*2,ans*2+1,1);
if(!dinic.solve())bg[++tot]=ans;
}
--ans,printf("%d\n",ans);
for(int i=1;i<=n;++i){
if(vis[bg[i]])continue;
int pos=bg[i];
vis[pos]=1;
while(pos)printf("%d ",pos),pos=nxt[pos],vis[pos]=1;
puts("");
}
return 0;
}