HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)
ACM
题目地址:HDU 1394 Minimum Inversion Number
题意:
给一个序列由[1,N]构成。能够通过旋转把第一个移动到最后一个。
问旋转后最小的逆序数对。
分析:
注意,序列是由[1,N]构成的,我们模拟下旋转,总的逆序数对会有规律的变化。
求出初始的逆序数对再循环一遍即可了。
至于求逆序数对,我曾经用归并排序解过这道题:点这里。
只是因为数据范围是5000。所以全然能够用线段树或树状数组来做:求某个数的作为逆序数对的后面部分的对数,能够在前面的数中查询小于这个数的数的个数。
直接在线一边加一边查即可了,复杂度为O(nlogn)。
只是老实说,这题的单个数没有太大,不然线段树和树状数组都开不下的。所以求逆序数对的最佳算法应该是归并排序解。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.csdn.net/hcbbt
* File: 1394_segment_tree.cpp
* Create Date: 2014-08-05 10:08:42
* Descripton: segment tree
*/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++) #define lson(x) ((x) << 1)
#define rson(x) ((x) << 1 | 1) typedef long long ll; const int N = 5010;
const int ROOT = 1; // below is sement point updated
struct seg {
ll w;
}; struct segment_tree {
seg node[N << 2]; void update(int pos) {
node[pos].w = node[lson(pos)].w + node[rson(pos)].w;
} void build(int l, int r, int pos) {
if (l == r) {
node[pos].w = 0;
return;
}
int m = (l + r) >> 1;
build(l, m, lson(pos));
build(m + 1, r, rson(pos));
update(pos);
} // add the point x with y
void modify(int l, int r, int pos, int x, ll y) {
if (l == r) {
node[pos].w += y;
return;
}
int m = (l + r) >> 1;
if (x <= m)
modify(l, m, lson(pos), x, y);
else
modify(m + 1, r, rson(pos), x, y);
update(pos);
} // query the segment [x, y]
ll query(int l, int r, int pos, int x, int y) {
if (x <= l && r <= y)
return node[pos].w;
int m = (l + r) >> 1;
ll res = 0;
if (x <= m)
res += query(l, m, lson(pos), x, y);
if (y > m)
res += query(m + 1, r, rson(pos), x, y);
return res;
} // remove the point that the sum of [0, it] is x, return its id
int remove(int l, int r, int pos, ll x) {
if (l == r) {
node[pos].w = 0;
return l;
}
int m = (l + r) >> 1;
int res;
if (x < node[lson(pos)].w)
res = remove(l, m, lson(pos), x);
else
res = remove(m + 1, r, rson(pos), x - node[lson(pos)].w);
update(pos);
return res;
}
} sgm; int n, a[N], b[N], t, sum, mmin; int main() {
while (~scanf("%d", &n)) {
sgm.build(1, n, ROOT);
sum = 0;
repf (i, 1, n)
scanf("%d", &a[i]);
for (int i = n; i >= 1; i--) {
b[i] = sgm.query(1, n, ROOT, 1, a[i] + 1);
sum += b[i];
sgm.modify(1, n, ROOT, a[i] + 1, 1);
}
mmin = sum;
repf (i, 1, n) {
sum = sum - a[i] + (n - 1 - a[i]);
mmin = min(mmin, sum);
}
cout << mmin << endl;
}
return 0;
}