LOJ #6008. 「网络流 24 题」餐巾计划

#6008. 「网络流 24 题」餐巾计划

题目描述

一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同。假设第 i ii 天需要 ri r_ir​i​​ 块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 P PP 分;或者把旧餐巾送到快洗部,洗一块需 M MM天,其费用为 F FF 分;或者送到慢洗部,洗一块需 N NN 天,其费用为 S SS 分(S<F S < FS<F)。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 n nn 天中餐巾使用计划,使总的花费最小。

输入格式

第 1 11 行有 6 66 个正整数 n nn、P PP、M MM、F FF、N NN、S SS。

n nn 是要安排餐巾使用计划的天数,P PP 是每块新餐巾的费用,M MM 是快洗部洗一块餐巾需用天数,F FF 是快洗部洗一块餐巾需要的费用,N NN 是慢洗部洗一块餐巾需用天数,S SS 是慢洗部洗一块餐巾需要的费用。

接下来的 n nn 行是餐厅在相继的 n nn 天里,每天需用的餐巾数。

输出格式

输出餐厅在相继的 n nn 天里使用餐巾的最小总花费。

样例

样例输入

3 10 2 3 3 2
5
6
7

样例输出

145

数据范围与提示

1≤n≤1000 1 \leq n \leq 10001≤n≤1000

code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9; struct Edge{
int u,v,f,c,nxt;
Edge(){}
Edge(int a,int b,int flow,int cost,int nt) { //-
u = a;v = b;f = flow;c = cost;nxt = nt;
}
}e[];
int head[N],dis[N],q[],pre[N];
bool vis[N];
int L,R,S,T,tot = ,Mc,Mf; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
int read() {
int x = ,f = ;char ch = nc();
for (; ch<''||ch>''; ch=nc()) if (ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int f,int c) {
e[++tot] = Edge(u,v,f,c,head[u]);head[u] = tot;
e[++tot] = Edge(v,u,,-c,head[v]);head[v] = tot;
}
bool spfa() {
for (int i=; i<=T; ++i) vis[i]=false,dis[i]=INF;
L = ;R = ;
dis[S] = ;
q[++R] = S;vis[S] = true;pre[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].v;
if (dis[v]>dis[u]+e[i].c && e[i].f > ) {
dis[v] = dis[u] + e[i].c;
pre[v] = i;
if (!vis[v]) q[++R] = v,vis[v] = true;
}
}
vis[u] = false;
}
return dis[T]!=INF;
}
void mcf() {
int zf = INF;
for (int i=T; i!=S; i=e[pre[i]].u)
zf = min(zf,e[pre[i]].f);
for (int i=T; i!=S; i=e[pre[i]].u)
e[pre[i]].f -= zf,e[pre[i]^].f += zf;
Mf += zf;Mc += dis[T]*zf;
}
int main() {
int n = read(),c = read(),kt = read(),kc = read(),mt = read(),mc = read();
S = n*+;T = n*+;
for (int t,i=; i<=n; ++i) {
t = read();
add_edge(S,i,t,);
add_edge(i+n,T,t,);
add_edge(S,i+n,INF,c);
if (i+kt<=n) add_edge(i,i+n+kt,INF,kc);
if (i+mt<=n) add_edge(i,i+n+mt,INF,mc);
if (i+<=n) add_edge(i,i+,INF,);
}
while (spfa()) mcf();
printf("%d",Mc);
return ;
}
上一篇:【刷题】LOJ 6008 「网络流 24 题」餐巾计划


下一篇:Mysql 的特殊之处