时间限制: 1 Sec 内存限制: 256 MB
题目描述
楠楠在网上刷题,感觉第一题:求两数的和(A+B Problem)太无聊了,于是增加了一题:A-B Problem,难倒了一群小朋友,哈哈。 题目是这样的:给出 N 个从小到大排好序的整数,一个差值 C,要求在这 N 个整数中找两个数 A 和 B,使得 A-B=C,问这样的方案有多少种? 例如:N=5,C=2,5 个整数是:2 2 4 8 10。答案是 3。具体方案:第3个数减第 1 个数;第 3 个数减第 2 个数;第 5 个数减第 4 个数。
输入
第一行 2 个正整数:N,C。 第二行 N 个整数:已经有序。注意:可能有相同的。
数据范围:
5 个数据:N 的范围是[1…1,000]。 5 个数据:N 的范围是[1…100,000]。
所有数据: C 的范围是[1…1,000,000,000]。 N 个整数中每个数的范围是:[0…1,000,000,000]。
输出
一个整数,表示该串数中包含的所有满足 A-B=C 的数对的方案数。
样例输入
4 1
1 1 2 2
样例输出
4
参考答案
#include<bits/stdc++.h>
using namespace std;
int n, c;
int a[100005];
long long ans;
int main() {
cin>>n >>c;
for(int i=1; i<=n; i++)
cin>>a[i];
sort(a+1, a+n+1);
int p1=1, p2=1;
for(int i=1; i<=n; i++) {
while(p1<=n && a[p1]-a[i]<c) {
p1++;
}
while(p2<=n && a[p2]-a[i]<=c) {
p2++;
}
ans+=p2-p1;
}
cout<<ans;
return 0;
}