第一步:一组数据
如下图:
第二步:构建完全二叉树
第三步:构建大根堆
从 last_child/2 节点往前,每个节点与其子节点比较,按照 fixDown 操作,如下图:
第四步:pop 最大值
执行 delMax 操作,将最大值输出,然后将最后的节点编程根节点,然后执行 fixDown 操作,如下图:
参考:HEAP SORT
代码实现如下:
pq.h
// pq.h: ADT interface for a priority queue #include <stdio.h> #include <stdlib.h> typedef struct pqRep *PQ; PQ createPQ(int size); void insertPQ(PQ q, int it); int delMaxPQ(PQ q); int isEmptyPQ(PQ q);
pqSort.c
/* pqSort.c: use a priority queue to sort an array of integers into descending order */ #include "pq.h" int main() { int a[] = {41, 2, 58, 156, 360, 81, 260, 74, 167, 13}; int length = sizeof(a)/sizeof(a[0]); PQ q = createPQ(length); printf("Array: "); for (int i = 0; i < length; i++) { printf("%d ", a[i]); insertPQ(q, a[i]); } printf("\nSorted: "); while (!isEmptyPQ(q)) { printf("%d ", delMaxPQ(q)); } putchar('\n'); return EXIT_SUCCESS; }
pqHP.c
// pqHP.c: priority queue implementation for pq.h using a heap #include "pq.h" // 'static' means these functions are for local use only static void fixDown(int *, int, int); static void fixUp(int *, int); // Priority queue implementation using an unordered array struct pqRep { int nItems; // actual count of Items int *items; // array of Items int maxsize; // maximum size of array }; PQ createPQ(int size) { PQ q = malloc(sizeof(struct pqRep)); // make room for the structure if (q == NULL) { fprintf(stderr, "out of memory\n"); exit(0); } q->items = malloc((size+1) * sizeof(int)); // make room for the array if (q->items == NULL) { // size+1 because heap 1..size fprintf(stderr, "out of memory\n"); exit(0); } q->nItems = 0; // we have no items yet q->maxsize = size; // remember the maxsize return q; // return the initial PQ } void insertPQ(PQ q, int it) { if (q == NULL) { fprintf(stderr, "priority queue not initialised\n"); exit(1); } if (q->nItems == q->maxsize) { fprintf(stderr, "priority queue full\n"); exit(1); } q->nItems++; // adding another item q->items[q->nItems] = it; // put the item at the end fixUp(q->items, q->nItems); // fixUp all the way to the root return; } int delMaxPQ(PQ q) { if (q == NULL) { fprintf(stderr, "priority queue not initialised\n"); exit(1); } if (q->nItems == 0) { fprintf(stderr, "priority queue empty\n"); exit(1); } int retval = q->items[1]; // this is the item we want to return q->items[1] = q->items[q->nItems]; // overwrite root by last item q->nItems--; // we are decreasing heap size by 1 fixDown(q->items, 1, q->nItems); // fixDown the new root return retval; } int isEmptyPQ(PQ q) { int empty = 0; if (q == NULL) { fprintf(stderr, "isEmptyPQ: priority queue not initialised\n"); } else { empty = q->nItems == 0; } return empty; } // fix up the heap for the 'new' element child void fixUp(int *heap, int child) { while (child>1 && heap[child/2]<heap[child]) { int swap = heap[child]; // if parent < child, do a swap heap[child] = heap[child/2]; heap[child/2] = swap; child = child/2; // become the parent } return; } // force value at a[par] into correct position void fixDown(int *heap, int par, int len) { int finished = 0; while (2*par<=len && !finished) {// as long as you are within bounds int child = 2*par; // the first child is here if (child<len && heap[child]<heap[child+1]) { child++; // choose larger of two children } if (heap[par]<heap[child]) { // if node is smaller than this child ... int swap = heap[child]; // if parent < child, do a swap heap[child] = heap[child/2]; heap[child/2] = swap; par = child; // ... and become this child } else { finished = 1; // else we do not have to go any further } } return; }
Compile and run:
prompt$ dcc pqHP.c pqSort.c prompt$ ./a.out Array: 41 2 58 156 360 81 260 74 167 13 Sorted: 360 260 167 156 81 74 58 41 13 2