SA的话t==0直接预处理出每个后缀的不同串贡献二分即可,然后t==1就按字典序枚举后缀,然后跳右端点计算和当前后缀的前缀相同的子串个数,直到第k个
不过bzoj上会T
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=10000005;
int n,o,sa[N],rk[N],he[N],wa[N],wb[N],wsu[N],wv[N],st[20][N],b[N];
long long k,a[N],sm;
char s[N];
bool cmp(int r[],int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void saa(char r[],int n,int m)
{
int *x=wa,*y=wb;
for(int i=0;i<=m;i++)
wsu[i]=0;
for(int i=1;i<=n;i++)
wsu[x[i]=r[i]]++;
for(int i=1;i<=m;i++)
wsu[i]+=wsu[i-1];
for(int i=n;i>=1;i--)
sa[wsu[x[i]]--]=i;
for(int j=1,p=1;j<=n&&p<n;j<<=1,m=p)
{
p=0;
for(int i=n-j+1;i<=n;i++)
y[++p]=i;
for(int i=1;i<=n;i++)
if(sa[i]>j)
y[++p]=sa[i]-j;
for(int i=1;i<=n;i++)
wv[i]=x[y[i]];
for(int i=0;i<=m;i++)
wsu[i]=0;
for(int i=1;i<=n;i++)
wsu[wv[i]]++;
for(int i=1;i<=m;i++)
wsu[i]+=wsu[i-1];
for(int i=n;i>=1;i--)
sa[wsu[wv[i]]--]=y[i];
swap(x,y);
p=1;
x[sa[1]]=1;
for(int i=2;i<=n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p:++p;
}
for(int i=1;i<=n;i++)
rk[sa[i]]=i;
for(int i=1,j,k=0;i<=n;he[rk[i++]]=k)
for(k?k--:0,j=sa[rk[i]-1];r[i+k]==r[j+k];k++);
}
int ques(int l,int r)
{
if(l>r)
return n-l+1;
int k=b[r-l+1];
return min(st[k][l],st[k][r-(1<<k)+1]);
}
int main()
{
scanf("%s%d%d",s+1,&o,&k);
n=strlen(s+1);
saa(s,n,200);
for(int i=1;i<=n;i++)
a[i]=a[i-1]+n-sa[i]+1-he[i];
if(o==0)
{
if(a[n]<k)
{
puts("-1");
return 0;
}
int l=1,r=n,ans=1;
while(l<=r)
{
int mid=(l+r)>>1;
if(a[mid]>=k)
r=mid-1,ans=mid;
else
l=mid+1;
}
for(int i=sa[ans];i<=n-a[ans]+k;i++)
putchar(s[i]);
return 0;
}
b[0]=-1;
for(int i=1;i<=n;i++)
b[i]=b[i>>1]+1;
for(int i=1;i<=n;i++)
st[0][i]=he[i];
for(int i=1;i<=19;i++)
for(int j=1;j<=n;j++)
st[i][j]=min(st[i-1][j],st[i-1][j+(1<<(i-1))]);
for(int i=1;i<=n;i++)
{
int nw=sa[i]+he[i],ed=n;
while(1)
{//cerr<<i<<" "<<ed<<endl;
if(nw>n)
break;
if(ed==i)
{
if(k>n-nw+1)
{
k-=n-nw+1;
break;
}
for(int j=sa[i];j<=nw+k-1;j++)
putchar(s[j]);
return 0;
}
int l=i,r=ed;
while(l<=r)
{
int mid=(l+r)>>1;
if(ques(i+1,mid)>=nw-sa[i]+1)
l=mid+1,ed=mid;
else
r=mid-1;
}
if(k>ed-i+1)
k-=ed-i+1;
else
{
for(int j=sa[i];j<=nw;j++)
putchar(s[j]);
return 0;
}
nw++;
}
}
puts("-1");
return 0;
}
SAM的话就利用trie树的性质,t==0就每个点size=1,t==1就每个点计算一下parent树上这个点下面有几个后缀终止点
然后计算trie树上的子树size和,枚举转移字符直到第k个即可
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1000006;
int n,o,k,fa[N],ch[N][26],tot=1,cur=1,la,dis[N],wsu[N],sa[N];
long long si[N],sm[N],ans;
char s[N];
void ins(int c,int id)
{
la=cur,dis[cur=++tot]=id;
si[cur]=1;
int p=la;
for(;p&&!ch[p][c];p=fa[p])
ch[p][c]=cur;
if(!p)
fa[cur]=1;
else
{
int q=ch[p][c];
if(dis[q]==dis[p]+1)
fa[cur]=q;
else
{
int nq=++tot;
dis[nq]=dis[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];
fa[q]=fa[cur]=nq;
for(;ch[p][c]==q;p=fa[p])
ch[p][c]=nq;
}
}
}
int main()
{
scanf("%s%d%d",s+1,&o,&k);
n=strlen(s+1);
for(int i=1;i<=n;i++)
ins(s[i]-'a',i);
for(int i=1;i<=tot;i++)
wsu[dis[i]]++;
for(int i=1;i<=n;i++)
wsu[i]+=wsu[i-1];
for(int i=tot;i>=1;i--)
sa[wsu[dis[i]]--]=i;
for(int i=tot;i>=1;i--)
o?si[fa[sa[i]]]+=si[sa[i]]:si[sa[i]]=1;
si[1]=0;
for(int i=tot;i>=1;i--)
{
sm[sa[i]]=si[sa[i]];
for(int j=0;j<26;j++)
if(ch[sa[i]][j])
sm[sa[i]]+=sm[ch[sa[i]][j]];
}
if(sm[1]<k)
{
puts("-1");
return 0;
}
int nw=1;
while((k-=si[nw])>0)
{
int w;
for(int i=0;i<26;i++)
if(ch[nw][i])
{
if(sm[ch[nw][i]]<k)
k-=sm[ch[nw][i]];
else
{
w=i;
break;
}
}
putchar(w+'a');
nw=ch[nw][w];
}
return 0;
}