Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2
Sample Output
15 和最大连续子串和类似,可以把二维的转化为一维,将i行到j行的各列数分别相加,求最大连续子串和即可。
同时可利用前缀和,sum[i][j]表示第j列前i行相加的和,i从1开始,则i-j行相加的和为sum[j][k]-sum[i-1][k]
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std; #define INF 0x3f3f3f3f
int a[][];
int t[], dp[];
int sum[][]; int n; int sovle()
{
int ans = -INF;
for (int i = ; i <= n; i++) {
for (int j = i; j <= n; j++) { int Max;
dp[] = sum[j][] - sum[i-][];
for (int k = ; k <= n; k++) {
int temp = sum[j][k]-sum[i-][k];
dp[k] = max(dp[k-]+temp, temp);
}
Max = *max_element(dp+, dp+n+);
if (Max > ans)
ans = Max;
}
}
return ans;
} int main()
{
//freopen("1.txt", "r", stdin);
scanf("%d", &n);
memset(sum, , sizeof(sum));
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++) {
scanf("%d", &a[i][j]);
sum[i][j] = sum[i-][j] + a[i][j];
}
printf("%d\n", sovle()); return ;
}