【推导2】

a ( t ) = { 200 0 ≤ t ≤ 5 0 e l s e a(t)=\left\{ \begin{array}{l} 200 \quad & 0 \leq t \leq 5 \\ 0 \quad & else \end{array} \right. a(t)={2000​0≤t≤5else​
所以, a ( t ) a(t) a(t)的无限积分为:
∫ a ( t ) d t = A ( t ) = ∫ − inf ⁡ 0 0 d t    +    ∫ 0 5 200 d t + ∫ 5 + i n f 0 d t = 1000 \int a(t) dt=A(t)= \int_{- \inf}^{0} 0 dt \; + \; \int_{0}^5 200dt + \int_{5}^{+inf} 0 dt = 1000 ∫a(t)dt=A(t)=∫−inf0​0dt+∫05​200dt+∫5+inf​0dt=1000

开始推导:
∫ ∫ a ( t ) t d t d t = ∫ [ A ( t ) t − ∫ A ( t ) d t ] d t = ∫ [ 1000 t − 500 t 2 ] d t = 500 t 2 − 500 3 t 3 \int \int a(t)t dt dt =\int \left[ A(t)t - \int A(t) dt \right] dt =\int \left[ 1000t -500t^2 \right] dt=500t^2-\frac{500}{3} t^3 ∫∫a(t)tdtdt=∫[A(t)t−∫A(t)dt]dt=∫[1000t−500t2]dt=500t2−3500​t3

上一篇:PID控制算法系列(3)-算法之外


下一篇:Solon Logging 插件的添加器级别控制和日志器的级别控制