题目链接戳这里
基尔霍夫矩阵裸题。构建基尔霍夫矩阵(度数矩阵-邻接矩阵),求他的任意\(n-1\)阶主子式的绝对值即为答案。
这题开始用java写,结果BigInteger太慢Tle了。
后来用c++写了个crt,不知道为什么wa了。
最后用long double强上最后输出转long long,ac了。
注意:给出的边可能有重复的。
#include<cmath>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long double ld;
typedef long long ll;
#define maxn (60)
#define eps (1e-7)
int N,M,K; ld A[maxn][maxn]; ll ans;
inline ld guass()
{
ld ret = 1; bool sign = false;
for (int i = 1,j;i < N;++i)
{
for (j = i;j < N;++j) if (fabs(A[j][i]) > eps) break;
if (j == N) { sign = true; break; }
for (int k = 1;k < N;++k) swap(A[i][k],A[j][k]);
ld inv = A[i][i]; ret *= inv;
for (j = i;j < N;++j) A[i][j] /= inv;
for (j = i+1;j < N;++j)
{
ld t = A[j][i];
for (int k = i;k < N;++k) A[j][k] -= t*A[i][k];
}
}
if (sign) ret = 0;
return fabs(ret);
}
int main()
{
freopen("10766.in","r",stdin);
freopen("10766.out","w",stdout);
while (scanf("%d %d %d",&N,&M,&K) != EOF)
{
for (int i = 1;i <= N;++i)
for (int j = 1;j <= N;++j)
{
if (i != j) A[i][j] = 1;
else A[i][i] = 0;
}
while (M--)
{
int a,b; scanf("%d %d",&a,&b);
A[a][b] = A[b][a] = 0;
}
for (int i = 1;i <= N;++i)
for (int j = 1;j <= N;++j)
if (i != j&&A[i][j] > eps) A[i][i]--;
printf("%lld\n",(ll)(guass()+0.5));
}
fclose(stdin); fclose(stdout);
return 0;
}