作者是个没有系统学习过高等数学的高中OIer,推导过程可能不严谨,有问题的地方望大家纠正一下qwq
因为作者之前没学过有关知识,是边看文章边推边写出来的,所以推导思路根原文章基本一致,原文章在此:【Math】复数表示个傅里叶变换
傅里叶级数公式:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
,
{
A
0
=
1
2
π
∫
−
π
π
f
(
t
)
d
t
a
n
=
1
2
π
∫
−
π
π
c
o
s
(
n
ω
t
)
f
(
t
)
d
t
b
n
=
1
2
π
∫
−
π
π
s
i
n
(
n
ω
t
)
f
(
t
)
d
t
f(t) = A_0 + \sum_{n=1}^{\infty}\Big[ a_ncos(n\omega t) + b_nsin(n\omega t) \Big] , \begin{cases} A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi}f(t)dt \\ a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi}cos(n\omega t)f(t)dt \\ b_n = \frac{1}{2\pi} \int_{-\pi}^{\pi}sin(n\omega t)f(t)dt \end{cases}
f(t)=A0+n=1∑∞[ancos(nωt)+bnsin(nωt)],⎩⎪⎨⎪⎧A0=2π1∫−ππf(t)dtan=2π1∫−ππcos(nωt)f(t)dtbn=2π1∫−ππsin(nωt)f(t)dt
推导:首先我们把一个周期函数用一堆正弦函数来表达:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
s
i
n
(
n
ω
t
+
φ
n
)
=
A
0
+
∑
n
=
1
∞
[
A
n
s
i
n
(
n
ω
t
)
c
o
s
φ
n
+
A
n
c
o
s
(
n
ω
t
)
s
i
n
φ
n
]
和
差
角
公
式
=
A
0
+
∑
n
=
1
∞
[
A
n
s
i
n
φ
n
c
o
s
(
n
ω
t
)
+
A
n
c
o
s
φ
n
s
i
n
(
n
ω
t
)
]
令
a
n
=
A
n
s
i
n
φ
n
,
b
n
=
A
n
c
o
s
φ
n
得
:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
两
边
同
时
取
积
分
得
到
:
∫
−
π
π
f
(
t
)
d
t
=
∫
−
π
π
A
0
d
t
+
∫
−
π
π
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
d
t
\begin{aligned} f(t) = &A_0 + \sum_{n=1}^{\infty} sin(n\omega t + \varphi_n) \\ = & A_0 + \sum_{n=1}^{\infty} \Big[A_nsin(n\omega t)cos \varphi_n + A_n cos(n\omega t)sin\varphi_n\Big] \qquad 和差角公式\\ = & A_0 + \sum_{n=1}^{\infty} \Big[A_n sin\varphi_ncos(n\omega t) + A_n cos \varphi_nsin(n\omega t)\Big] \\ 令 \; a_n = &A_nsin\varphi_n ,b_n = A_ncos\varphi_n 得:\\ f(t) = &A_0 + \sum_{n = 1}^{\infty}[a_ncos(n\omega t) + b_nsin(n\omega t)] \\ 两边同时取&积分得到: \\ \int_{-\pi}^{\pi}f(t)dt = & \int_{-\pi}^{\pi}A_0dt + \int_{-\pi}^{\pi}\sum_{n=1}^{\infty}[a_ncos(n\omega t) + b_nsin(n\omega t)]dt \end{aligned}
f(t)===令an=f(t)=两边同时取∫−ππf(t)dt=A0+n=1∑∞sin(nωt+φn)A0+n=1∑∞[Ansin(nωt)cosφn+Ancos(nωt)sinφn]和差角公式A0+n=1∑∞[Ansinφncos(nωt)+Ancosφnsin(nωt)]Ansinφn,bn=Ancosφn得:A0+n=1∑∞[ancos(nωt)+bnsin(nωt)]积分得到:∫−ππA0dt+∫−ππn=1∑∞[ancos(nωt)+bnsin(nωt)]dt
我们先把这一项算出来:
∫
−
π
π
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
d
t
\begin{aligned} \int_{-\pi}^{\pi}\sum_{n=1}^{\infty}[a_ncos(n\omega t) + b_nsin(n\omega t)]dt \end{aligned}
∫−ππn=1∑∞[ancos(nωt)+bnsin(nωt)]dt
要计算这一项,只需要知道求和里面的东西等于几,也就是:
∫
−
π
π
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
d
t
=
a
n
n
ω
s
i
n
(
n
ω
t
)
−
b
n
n
ω
c
o
s
(
n
ω
t
)
∣
−
π
π
=
[
a
n
n
ω
s
i
n
(
n
ω
π
)
−
b
n
n
ω
c
o
s
(
n
ω
π
)
]
−
[
a
n
n
ω
s
i
n
(
−
n
ω
π
)
−
b
n
n
ω
c
o
s
(
−
n
ω
π
)
]
=
a
n
n
ω
s
i
n
(
n
ω
π
)
−
a
n
n
ω
s
i
n
(
−
n
ω
π
)
+
b
n
n
ω
c
o
s
(
−
n
ω
π
)
−
b
n
n
ω
c
o
s
(
n
ω
π
)
=
a
n
n
ω
[
s
i
n
(
n
ω
π
)
−
s
i
n
(
−
n
ω
π
)
]
+
b
n
n
ω
[
c
o
s
(
−
n
ω
π
)
−
c
o
s
(
n
ω
π
)
]
\begin{aligned} &\int_{-\pi}^{\pi}[a_ncos(n\omega t) + b_nsin(n\omega t)]dt \\ = & \frac{a_n}{n\omega}sin(n\omega t) - \frac{b_n}{n\omega}cos(n\omega t) \bigg|_{-\pi}^{\pi} \\ = & \Big[ \frac{a_n}{n\omega}sin(n\omega \pi) - \frac{b_n}{n\omega}cos(n\omega \pi) \Big] - \Big[ \frac{a_n}{n\omega}sin(-n\omega \pi) - \frac{b_n}{n\omega}cos(-n\omega \pi) \Big] \\ = & \frac{a_n}{n\omega}sin(n\omega \pi) - \frac{a_n}{n\omega}sin(-n\omega \pi) + \frac{b_n}{n\omega}cos(-n\omega \pi) - \frac{b_n}{n\omega}cos(n\omega \pi) \\ = & \frac{a_n}{n\omega}[sin(n\omega \pi) - sin(-n\omega\pi)] + \frac{b_n}{n\omega}[cos(-n\omega \pi) - cos(n\omega\pi)] \end{aligned}
====∫−ππ[ancos(nωt)+bnsin(nωt)]dtnωansin(nωt)−nωbncos(nωt)∣∣∣∣−ππ[nωansin(nωπ)−nωbncos(nωπ)]−[nωansin(−nωπ)−nωbncos(−nωπ)]nωansin(nωπ)−nωansin(−nωπ)+nωbncos(−nωπ)−nωbncos(nωπ)nωan[sin(nωπ)−sin(−nωπ)]+nωbn[cos(−nωπ)−cos(nωπ)]
因为
s
i
n
k
π
=
0
sink\pi = 0
sinkπ=0 且
c
o
s
x
=
c
o
x
(
−
x
)
cosx = cox(-x)
cosx=cox(−x),所以上面那一项总体就是 0。即:
∫
−
π
π
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
d
t
=
0
\int_{-\pi}^{\pi}[a_ncos(n\omega t) + b_nsin(n\omega t)]dt = 0
∫−ππ[ancos(nωt)+bnsin(nωt)]dt=0
所以原式可以化为:
∫
−
π
π
f
(
t
)
d
t
=
∫
−
π
π
A
0
d
t
+
∫
−
π
π
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
]
d
t
=
A
0
t
∣
−
π
π
+
0
=
[
π
−
(
−
π
)
]
A
0
=
2
π
A
0
∴
A
0
=
1
2
π
∫
−
π
π
f
(
t
)
d
t
\begin{aligned} \int_{-\pi}^{\pi}f(t)dt = & \int_{-\pi}^{\pi}A_0dt + \int_{-\pi}^{\pi}\sum_{n=1}^{\infty}[a_ncos(n\omega t) + b_nsin(n\omega t)]dt \\ = & A_0t \bigg|_{-\pi}^{\pi} + 0 = [\pi - (-\pi)]A_0 = 2\pi A_0 \\ \therefore A_0 = \frac{1}{2\pi}\int_{-\pi}^{\pi}&f(t)dt \end{aligned}
∫−ππf(t)dt==∴A0=2π1∫−ππ∫−ππA0dt+∫−ππn=1∑∞[ancos(nωt)+bnsin(nωt)]dtA0t∣∣∣∣−ππ+0=[π−(−π)]A0=2πA0f(t)dt
然后我们来求
a
n
a_n
an 和
b
n
b_n
bn。等式两边同时乘上
c
o
s
(
k
ω
t
)
cos(k\omega t)
cos(kωt)得到了:
f
(
t
)
c
o
s
(
k
ω
t
)
=
A
0
c
o
s
(
k
ω
t
)
+
∑
n
=
1
∞
[
a
n
c
o
s
(
n
ω
t
)
c
o
s
(
k
ω
t
)
+
b
n
s
i
n
(
n
ω
t
)
c
o
s
(
k
ω
t
)
]
\begin{aligned} f(t)cos(k\omega t) = &A_0cos(k\omega t) + \sum_{n = 1}^{\infty}[a_ncos(n\omega t)cos(k\omega t) + b_nsin(n\omega t)cos(k\omega t)]\\ \end{aligned}
f(t)cos(kωt)=A0cos(kωt)+n=1∑∞[ancos(nωt)cos(kωt)+bnsin(nωt)cos(kωt)]
两边同时积分得到了:
∫
−
π
π
f
(
t
)
c
o
s
(
k
ω
t
)
d
t
=
A
0
∫
−
π
π
c
o
s
(
k
ω
t
)
d
t
+
∑
n
=
1
∞
[
a
n
∫
−
π
π
c
o
s
(
n
ω
t
)
c
o
s
(
k
ω
t
)
d
t
+
b
n
∫
−
π
π
s
i
n
(
n
ω
t
)
c
o
s
(
k
ω
t
)
d
t
]
\begin{aligned} \int_{-\pi}^{\pi} f(t)cos(k\omega t)dt = &A_0\int_{-\pi}^{\pi}cos(k\omega t)dt +\\ \sum_{n = 1}^{\infty}[a_n\int_{-\pi}^{\pi}&cos(n\omega t)cos(k\omega t)dt + b_n\int_{-\pi}^{\pi}sin(n\omega t)cos(k\omega t)dt]\\ \end{aligned}
∫−ππf(t)cos(kωt)dt=n=1∑∞[an∫−ππA0∫−ππcos(kωt)dt+cos(nωt)cos(kωt)dt+bn∫−ππsin(nωt)cos(kωt)dt]
又因为这些项都是 0:
A
0
∫
−
π
π
c
o
s
(
k
ω
t
)
d
t
=
0
b
n
∫
−
π
π
s
i
n
(
n
ω
t
)
c
o
s
(
k
ω
t
)
d
t
=
0
\begin{aligned} A_0\int_{-\pi}^{\pi}cos(k\omega t)dt = 0\\ b_n\int_{-\pi}^{\pi}sin(n\omega t)cos(k\omega t)dt = 0 \end{aligned}
A0∫−ππcos(kωt)dt=0bn∫−ππsin(nωt)cos(kωt)dt=0
所以:
∫
−
π
π
f
(
t
)
c
o
s
(
k
ω
t
)
d
t
=
a
n
∑
n
=
1
∞
∫
−
π
π
c
o
s
(
n
ω
t
)
c
o
s
(
k
ω
t
)
d
t
=
a
n
∫
−
π
π
c
o
s
2
(
n
ω
t
)
d
t
=
a
n
2
∫
−
π
π
[
1
+
c
o
s
(
2
n
ω
t
)
]
d
t
半
角
公
式
=
a
n
2
[
∫
−
π
π
1
d
t
+
∫
−
π
π
c
o
s
(
2
n
ω
t
)
d
t
]
\begin{aligned} \int_{-\pi}^{\pi} f(t)cos(k\omega t)dt = &a_n\sum_{n = 1}^{\infty}\int_{-\pi}^{\pi}cos(n\omega t)cos(k\omega t)dt \\ = &a_n \int_{-\pi}^{\pi}cos^2(n\omega t)dt \\ = & \frac{a_n}{2} \int_{-\pi}^{\pi} [1 + cos(2n\omega t)]dt \qquad 半角公式\\ = & \frac{a_n}{2} \Big[\int_{-\pi}^{\pi}1dt + \int_{-\pi}^{\pi}cos(2n\omega t)dt \Big] \end{aligned}
∫−ππf(t)cos(kωt)dt====ann=1∑∞∫−ππcos(nωt)cos(kωt)dtan∫−ππcos2(nωt)dt2an∫−ππ[1+cos(2nωt)]dt半角公式2an[∫−ππ1dt+∫−ππcos(2nωt)dt]
又因为:
∫
−
π
π
c
o
s
(
2
n
ω
t
)
d
t
=
0
\int_{-\pi}^{\pi}cos(2n\omega t)dt = 0
∫−ππcos(2nωt)dt=0
所以:
∫
−
π
π
f
(
t
)
c
o
s
(
k
ω
t
)
d
t
=
a
n
∑
n
=
1
∞
∫
−
π
π
c
o
s
(
n
ω
t
)
c
o
s
(
k
ω
t
)
d
t
=
a
n
2
∫
−
π
π
1
d
t
=
a
n
2
×
t
∣
−
π
π
=
a
n
2
[
π
−
(
−
π
)
]
=
π
a
n
∴
a
n
=
1
π
∫
−
π
π
f
(
t
)
c
o
s
(
n
ω
t
)
d
t
(
n
=
k
)
\begin{aligned} &\int_{-\pi}^{\pi} f(t)cos(k\omega t)dt = a_n\sum_{n = 1}^{\infty}\int_{-\pi}^{\pi}cos(n\omega t)cos(k\omega t)dt \\ = & \frac{a_n}{2} \int_{-\pi}^{\pi}1dt = \frac{a_n}{2} \times t \bigg|_{-\pi}^{\pi} = \frac{a_n}{2} [\pi - (-\pi)] = \pi a_n\\ \therefore &a_n = \frac{1}{\pi}\int_{-\pi}^{\pi} f(t)cos(n\omega t)dt \qquad \qquad \qquad \qquad (n=k) \end{aligned}
=∴∫−ππf(t)cos(kωt)dt=ann=1∑∞∫−ππcos(nωt)cos(kωt)dt2an∫−ππ1dt=2an×t∣∣∣∣−ππ=2an[π−(−π)]=πanan=π1∫−ππf(t)cos(nωt)dt(n=k)
计算
b
n
b_n
bn 的方法和计算
a
n
a_n
an 的基本相同,可以得到:
b
n
=
1
π
∫
−
π
π
f
(
t
)
s
i
n
(
k
ω
t
)
d
t
(
n
=
k
)
b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)sin(k\omega t)dt \qquad \qquad \qquad \qquad \quad (n = k)
bn=π1∫−ππf(t)sin(kωt)dt(n=k)
傅里叶指数形式:
f
(
t
)
=
1
T
∑
n
=
−
∞
+
∞
∫
t
0
t
o
+
T
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
f(t) = \frac{1}{T}\sum_{n = -\infty}^{+\infty}\int_{t_0}^{t_o+T}e^{-in\omega t}dt \; \cdot \; e^{in\omega t}
f(t)=T1n=−∞∑+∞∫t0to+Te−inωtdt⋅einωt
推导如下:
由欧拉公式(
e
i
x
=
c
o
s
x
+
i
s
i
n
x
e^{ix} = cosx + isinx
eix=cosx+isinx)我们可以推出:
c
o
s
x
=
e
i
x
+
e
−
i
x
2
s
i
n
x
=
−
i
⋅
e
i
x
−
e
−
i
x
2
cosx = \frac{e^{ix} + e^{-ix}}{2} \qquad sinx = -i \cdot \frac{e^{ix} - e^{-ix}}{2}
cosx=2eix+e−ixsinx=−i⋅2eix−e−ix
将两式带入傅里叶级数得到:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
[
a
n
e
i
n
ω
t
+
e
−
i
n
ω
t
2
+
b
n
⋅
(
−
i
)
e
i
n
ω
t
−
e
−
i
n
ω
t
2
]
=
A
0
+
∑
n
=
1
∞
[
a
n
−
i
b
n
2
e
i
n
ω
t
+
a
n
+
i
b
n
2
e
−
i
n
ω
t
]
\begin{aligned} f(t) = &A_0 + \sum_{n = 1}^{\infty}[a_n\frac{e^{in\omega t} + e^{-in\omega t}}{2} + b_n \cdot (-i)\frac{e^{in\omega t} - e^{-in\omega t}}{2} ]\\ = &A_0 + \sum_{n = 1}^{\infty}[\frac{a_n-ib_n}{2}e^{in\omega t } + \frac{a_n + ib_n}{2}e^{-in\omega t}]\\ \end{aligned}
f(t)==A0+n=1∑∞[an2einωt+e−inωt+bn⋅(−i)2einωt−e−inωt]A0+n=1∑∞[2an−ibneinωt+2an+ibne−inωt]
又因为:
a
n
=
1
π
∫
−
π
π
f
(
t
)
c
o
s
(
n
ω
t
)
d
t
(
n
=
k
)
b
n
=
1
π
∫
−
π
π
f
(
t
)
s
i
n
(
k
ω
t
)
d
t
(
n
=
k
)
\begin{aligned} a_n = \frac{1}{\pi}\int_{-\pi}^{\pi} f(t)cos(n\omega t)dt \qquad \qquad \qquad \qquad (n=k)\\ b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)sin(k\omega t)dt \qquad \qquad \qquad \qquad \quad (n = k) \end{aligned}
an=π1∫−ππf(t)cos(nωt)dt(n=k)bn=π1∫−ππf(t)sin(kωt)dt(n=k)
所以:
a
n
−
i
b
n
2
=
1
2
⋅
[
1
π
∫
−
π
π
f
(
t
)
c
o
s
(
n
ω
t
)
d
t
−
i
⋅
1
π
∫
−
π
π
f
(
t
)
s
i
n
(
k
ω
t
)
d
t
]
=
1
2
⋅
2
T
[
∫
t
0
t
0
+
T
c
o
s
(
n
ω
t
)
f
(
t
)
d
t
−
i
∫
t
0
t
0
+
T
s
i
n
(
n
ω
t
)
f
(
t
)
d
t
]
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
[
c
o
s
(
n
ω
t
)
−
i
s
i
n
(
n
ω
t
)
]
d
t
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
[
e
i
n
ω
t
+
e
−
i
n
ω
t
2
−
i
⋅
(
−
i
)
e
i
n
ω
t
−
e
−
i
n
ω
t
2
]
d
t
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
\begin{aligned} \frac{a_n - ib_n}{2} = &\frac{1}{2} \cdot \Bigg[ \frac{1}{\pi}\int_{-\pi}^{\pi} f(t)cos(n\omega t)dt - i \cdot \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)sin(k\omega t)dt \Bigg] \\ = &\frac{1}{2} \cdot \frac{2}{T}\Bigg[ \int_{t_0}^{t_0+T}cos(n\omega t)f(t)dt - i \int_{t_0}^{t_0+T}sin(n\omega t)f(t)dt \Bigg]\\ = & \frac{1}{T} \cdot \int_{t_0}^{t_0+T}f(t)[cos(n\omega t) - isin(n\omega t)]dt \\ = & \frac{1}{T} \cdot \int_{t_0}^{t_0+T}f(t)\Big[\frac{e^{in\omega t} + e^{-in\omega t}}{2} - i \cdot (-i)\frac{e^{in\omega t} - e^{-in\omega t}}{2}\Big]dt \\ = & \frac{1}{T} \cdot \int _{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \end{aligned}
2an−ibn=====21⋅[π1∫−ππf(t)cos(nωt)dt−i⋅π1∫−ππf(t)sin(kωt)dt]21⋅T2[∫t0t0+Tcos(nωt)f(t)dt−i∫t0t0+Tsin(nωt)f(t)dt]T1⋅∫t0t0+Tf(t)[cos(nωt)−isin(nωt)]dtT1⋅∫t0t0+Tf(t)[2einωt+e−inωt−i⋅(−i)2einωt−e−inωt]dtT1⋅∫t0t0+Tf(t)e−inωtdt
a
n
+
i
b
n
2
=
1
2
⋅
[
1
π
∫
−
π
π
f
(
t
)
c
o
s
(
n
ω
t
)
d
t
+
i
⋅
1
π
∫
−
π
π
f
(
t
)
s
i
n
(
k
ω
t
)
d
t
]
=
1
2
⋅
2
T
[
∫
t
0
t
0
+
T
c
o
s
(
n
ω
t
)
f
(
t
)
d
t
+
i
∫
t
0
t
0
+
T
s
i
n
(
n
ω
t
)
f
(
t
)
d
t
]
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
[
c
o
s
(
n
ω
t
)
+
i
s
i
n
(
n
ω
t
)
]
d
t
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
[
e
i
n
ω
t
+
e
−
i
n
ω
t
2
+
i
⋅
(
−
i
)
e
i
n
ω
t
−
e
−
i
n
ω
t
2
]
d
t
=
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
e
i
n
ω
t
d
t
\begin{aligned} \frac{a_n + ib_n}{2} = &\frac{1}{2} \cdot \Bigg[ \frac{1}{\pi}\int_{-\pi}^{\pi} f(t)cos(n\omega t)dt + i \cdot \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)sin(k\omega t)dt \Bigg] \\ = &\frac{1}{2} \cdot \frac{2}{T}\Bigg[ \int_{t_0}^{t_0+T}cos(n\omega t)f(t)dt + i \int_{t_0}^{t_0+T}sin(n\omega t)f(t)dt \Bigg]\\ = & \frac{1}{T} \cdot \int_{t_0}^{t_0+T}f(t)[cos(n\omega t) + isin(n\omega t)]dt \\ = & \frac{1}{T} \cdot \int_{t_0}^{t_0+T}f(t)\Big[\frac{e^{in\omega t} + e^{-in\omega t}}{2} + i \cdot (-i)\frac{e^{in\omega t} - e^{-in\omega t}}{2}\Big]dt \\ = & \frac{1}{T} \cdot \int _{t_0}^{t_0+T}f(t)e^{in\omega t}dt \end{aligned}
2an+ibn=====21⋅[π1∫−ππf(t)cos(nωt)dt+i⋅π1∫−ππf(t)sin(kωt)dt]21⋅T2[∫t0t0+Tcos(nωt)f(t)dt+i∫t0t0+Tsin(nωt)f(t)dt]T1⋅∫t0t0+Tf(t)[cos(nωt)+isin(nωt)]dtT1⋅∫t0t0+Tf(t)[2einωt+e−inωt+i⋅(−i)2einωt−e−inωt]dtT1⋅∫t0t0+Tf(t)einωtdt
然后再带回去:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
[
a
n
−
i
b
n
2
e
i
n
ω
t
+
a
n
+
i
b
n
2
e
−
i
n
ω
t
]
=
1
T
∫
t
0
t
0
+
T
f
(
t
)
d
t
+
∑
n
=
1
∞
[
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
+
1
T
⋅
∫
t
0
t
0
+
T
f
(
t
)
e
i
n
ω
t
d
t
⋅
e
−
i
n
ω
t
]
=
1
T
∫
t
0
t
0
+
T
f
(
t
)
d
t
+
1
T
∑
n
=
1
∞
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
+
1
T
∑
n
=
−
∞
−
1
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
=
1
T
∑
n
=
−
∞
+
∞
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
\begin{aligned} f(t) = &A_0 + \sum_{n = 1}^{\infty}[\frac{a_n-ib_n}{2}e^{in\omega t } + \frac{a_n + ib_n}{2}e^{-in\omega t}]\\ = & \frac{1}{T}\int_{t_0}^{t_0+T}f(t)dt + \sum_{n=1}^{\infty}\Big[ \frac{1}{T} \cdot \int _{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \cdot e^{in\omega t} + \frac{1}{T} \cdot \int _{t_0}^{t_0+T}f(t)e^{in\omega t}dt \cdot e^{-in\omega t} \Big] \\ = &\frac{1}{T}\int_{t_0}^{t_0+T}f(t)dt + \frac{1}{T}\sum_{n=1}^{\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \cdot e^{in\omega t} + \frac{1}{T}\sum_{n = -\infty}^{-1}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \cdot e^{in\omega t}\\ = & \frac{1}{T}\sum_{n=-\infty}^{+\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \cdot e^{in \omega t} \end{aligned}
f(t)====A0+n=1∑∞[2an−ibneinωt+2an+ibne−inωt]T1∫t0t0+Tf(t)dt+n=1∑∞[T1⋅∫t0t0+Tf(t)e−inωtdt⋅einωt+T1⋅∫t0t0+Tf(t)einωtdt⋅e−inωt]T1∫t0t0+Tf(t)dt+T1n=1∑∞∫t0t0+Tf(t)e−inωtdt⋅einωt+T1n=−∞∑−1∫t0t0+Tf(t)e−inωtdt⋅einωtT1n=−∞∑+∞∫t0t0+Tf(t)e−inωtdt⋅einωt
傅里叶变换和傅里叶逆变换
傅里叶变换:
F
(
ω
x
)
=
∫
−
∞
+
∞
f
(
t
)
s
−
i
ω
x
t
d
t
\begin{aligned} F(\omega_x) = \int_{-\infty}^{+\infty}f(t)s^{-i\omega_x t}dt \end{aligned}
F(ωx)=∫−∞+∞f(t)s−iωxtdt
傅里叶逆变换:
f
(
t
)
=
1
2
π
∫
−
∞
+
∞
F
(
ω
x
)
e
i
ω
x
t
d
ω
\begin{aligned} f(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega_x)e^{i\omega_x t}d\omega \end{aligned}
f(t)=2π1∫−∞+∞F(ωx)eiωxtdω
其中
F
(
ω
)
F(\omega)
F(ω) 叫做
f
(
t
)
f(t)
f(t) 的像函数,
f
(
t
)
f(t)
f(t) 叫做
F
(
ω
)
F(\omega)
F(ω) 的像原函数。
F
(
ω
)
F(\omega)
F(ω) 是
f
(
t
)
f(t)
f(t) 的像。
f
(
t
)
f(t)
f(t) 是
F
(
ω
)
F(\omega)
F(ω) 原像。
推导过程如下:
令:
ω
x
=
n
ω
F
(
ω
x
)
=
∫
−
∞
+
∞
f
(
t
)
s
−
i
ω
x
t
d
t
\omega_x = n\omega \qquad F(\omega_x) = \int_{-\infty}^{+\infty}f(t)s^{-i\omega_x t}dt
ωx=nωF(ωx)=∫−∞+∞f(t)s−iωxtdt
又因为:
f
(
t
)
=
1
T
∑
n
=
−
∞
+
∞
∫
t
0
t
0
+
T
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
f(t) = \frac{1}{T}\sum_{n=-\infty}^{+\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t}dt \cdot e^{in \omega t}
f(t)=T1n=−∞∑+∞∫t0t0+Tf(t)e−inωtdt⋅einωt
所以:
f
(
t
)
=
1
T
∑
−
∞
+
∞
∫
−
∞
+
∞
f
(
t
)
e
−
i
ω
x
t
d
t
⋅
e
i
ω
x
t
=
1
T
∑
−
∞
+
∞
[
F
(
ω
x
)
e
i
ω
x
t
]
=
1
2
π
∫
−
∞
+
∞
F
(
ω
x
)
e
i
ω
x
t
d
ω
x
\begin{aligned} f(t) = &\frac{1}{T}\sum_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t)e^{-i\omega_xt}dt \cdot e^{i\omega_xt} \\ = &\frac{1}{T} \sum_{-\infty}^{+\infty}[F(\omega_x)e^{i\omega_xt}] = \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega_x)e^{i\omega_xt}d\omega_x \end{aligned}
f(t)==T1−∞∑+∞∫−∞+∞f(t)e−iωxtdt⋅eiωxtT1−∞∑+∞[F(ωx)eiωxt]=2π1∫−∞+∞F(ωx)eiωxtdωx
离散傅里叶变换
离散傅里叶变换:
F
(
n
)
=
∑
n
=
0
N
f
(
t
)
e
i
2
π
n
N
t
F(n) = \sum_{n = 0}^{N}f(t)e^{i\frac{2\pi n}{N}t}
F(n)=n=0∑Nf(t)eiN2πnt
逆离散傅里叶变换:
f
(
t
)
=
∑
n
=
0
N
1
N
F
(
n
)
e
i
2
π
n
N
t
f(t) = \sum_{n=0}^{N}\frac{1}{N}F(n)e^{i\frac{2\pi n}{N}t}
f(t)=n=0∑NN1F(n)eiN2πnt