自适应滤波:奇异值分解SVD

作者:桂。

时间:2017-04-03  19:41:26

链接:http://www.cnblogs.com/xingshansi/p/6661230.html


【读书笔记10】

前言

广义逆矩阵可以借助SVD进行求解,这在上一篇文章已经分析。本文主要对SVD进行梳理,主要包括:

  1)特征向量意义;

  2)特征值分解与SVD;

  3)PCA与SVD;

内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接。

一、特征向量

第一反应是:啥是特征向量?为什么好好的一个矩阵,要拆成这个模样?先看定义

$Av = \lambda v$

矩阵对应线性变换,可以看到特征向量是这样:线性变换后,只伸缩既不平移、也不旋转。如计算$A^5v$,可以直接用$\lambda^5 v$,省去多少计算?

*有一张图很直观:

自适应滤波:奇异值分解SVD

她的微笑是不是有熟悉的味道o(^▽^)o?不过这里不解读微笑,看红线→:矩阵线性变换后,方向也发生了改变,所以它不是特征向量; 蓝线→:线性变换之后,方向不变,所以是特征向量。由此也可见,特征向量是一个族,而不是独一无二的。

二、奇异值分解

  A-特征值分解(EVD,Eigenvalues Decomposition)

这里分析酉矩阵,假设矩阵$\bf{B}$具有${\bf{B}} = {\bf{A}}{{\bf{A}}^H}$的形式,根据特征值定义:

自适应滤波:奇异值分解SVD

根据酉矩阵特性:

${\bf{B}} = {\bf{U}}\Lambda {{\bf{U}}^H}$

这里仍然可以写成求和的形式,这也是显然的:酉矩阵张成的空间,就是每一个维度成分的叠加嘛。

  B-奇异值分解(SVD,Singularly Valuable Decomposition)

根据矩阵变换特性:

自适应滤波:奇异值分解SVD

其中$\bf{A}$是$m$x$n$的矩阵,$\bf{U_o}$为$m$x$m$,$\bf{V_o}$为$n$x$n$定义$\bf{B}$,并借助EVD进行分析:

自适应滤波:奇异值分解SVD

因为是酉矩阵,从而${{\bf{U}}_o} = {\bf{U}}$。${\bf{\Sigma }}$为$m$x$n$,且,${s_i} = \sqrt {{\lambda _i}}, i=1,2,...min(m,n)$,至此完成$\bf{U_o}$和${\bf{\Sigma }}$的求解,还剩下$\bf{V_o}$。

对于${\bf{V_o}}$则有:

${\bf{AV_o}} = {\bf{U\Sigma }}$

即${{\bf{U}}^H}{\bf{A}} = {\bf{\Sigma }}{{\bf{V_o}}^H}$,因为有对角阵,转化为向量运算很方便,对于缺失的部分可以借助施密特正交化进行补全。

至此完成SVD分解。

总结SVD思路:

步骤一:利用$AA^H$求解矩阵$U$,并构造$S$;

步骤二:求解$V_o$,并借助施密特正交化构造完整的$V$。

特征值求解、施密特正交化,任何一本线性代数应该都有,所以这里假设特征值分解EVD、施密特正交化直接调用,给出SVD求解的代码(与svd指令等价):

a = [ 1     7     5
1 6 4
2 7 8
10 5 4]';
[E,D] = eig(a*a');
%预处理
[val,pos] = sort(diag(D),'descend');
E = E(:,pos);
D = diag(val);
mina = min(size(a));
%SVD分解
U = E; %完成U求解
S = zeros(size(a));
S(1:mina,1:mina) = diag(sqrt(val(1:mina)));%完成S求解
Vo = [U(:,1:mina)'*a]'./repmat(diag(S)',size(a,2),1);%求解Vo
V = [Vo null(Vo')];%完成V求解,补全正交基,可借助施密特正交化

  

三、PCA与SVD

根据上文分析,可以看出SVD或者EVD都可以分解出特征值以及特征向量。

再来回顾以前PCA一文的求解思路:

  • 步骤一:数据中心化——去均值,根据需要,有的需要归一化——Normalized;
  • 步骤二:求解协方差矩阵;
  • 步骤三:利用特征值分解/奇异值分解 求解特征值以及特征向量
  • 步骤四:利用特征向量构造投影矩阵
  • 步骤五:利用投影矩阵,得出降维的数据。

PCA的核心就是根据特征值的大小/总的比例  确定对应特征向量的个数,从而构造投影矩阵。简而言之:有了特征值、特征向量,也就相当于有了PCA

而EVD/SVD是得到特征值、特征向量的方式,可以说EVD/SVD是PCA的基础,PCA是二者的应用方式。

上一篇:关于SVD


下一篇:矩阵的SVD分解