BZOJ 1007: [HNOI2008]水平可见直线 平面直线

1007: [HNOI2008]水平可见直线

Description

在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
    例如,对于直线:
    L1:y=x; L2:y=-x; L3:y=0
    则L1和L2是可见的,L3是被覆盖的.
    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

HINT

题解:

当前直线与相对他斜率次大和次次大的2条直线时,如果与次大的(或者次次大)的交点在次大与次次大的交点左边,那么次大的直线一定被覆盖掉了!

画图自己看!(其实也就是这三个点形成一个凸包,然后上凸包的边所在直线一定看得到,下凸包一定被覆盖!)

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+, M = , mod = 1e9 + , inf = 0x3f3f3f3f;
typedef long long ll;
#define eps 1e-8 struct line{double a,b;int index;}l[N],seg[N];
bool bo[N];
int top = , n ;
int cmp (line x,line y) {
if(fabs(x.a-y.a)<=eps) return x.b<y.b;
return x.a<y.a;
}
double crossx(line x,line y) {
return (y.b-x.b) / (x.a-y.a);
}
void inserts(line x) {
while(top) {
if(fabs(seg[top].a - x.a)<=eps) top--;
else if(top>&&crossx(x,seg[top-])<=crossx(seg[top],seg[top-]))
top--;
else break;
}
seg[++top] = x;
}
void solve() {
sort(l+,l+n+,cmp);
for(int i=;i<=n;i++) inserts(l[i]);
for(int i=;i<=top;i++) bo[seg[i].index] = true;
for(int i=;i<=n;i++)
if(bo[i]) printf("%d ",i);
printf("\n");
}
int main() {
scanf("%d",&n);
for(int i=;i<=n;i++) {
scanf("%lf%lf",&l[i].a,&l[i].b);
l[i].index = i;
}
solve();
}
上一篇:快速排序quick_sort(python的两种实现方式)


下一篇:bzoj1007 [HNOI2008]水平可见直线——单调栈