汉诺游戏规则如下:
1、有三根相邻的柱子,标号为A,B,C。
2、A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘。
3、现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方。
程序要求:
输入盘子个数,输出完成步骤。
解决思路:
在完成题目前,首先应对游戏规则和解题方法有所了解,此处借7k7k小游戏中的汉诺塔(3个)演示。
首先我们的目的是把A的三个盘子移到C处,所以首先应完成的便是把上两个盘子放到B上,才能把第三个(最大的)盘子放到C,接着把B上的两个放到C上。
所以这时我们发现,B的作用便是用来暂时存放除了最后一个的其他所有盘子,以便后续操作
所以我们可以设置x,y,z三个变量,分别表示初始盘子的位置,借放盘子的位置,最终完成的位置。
注意:x,y,z不一定与A,B,C始终一一对应!!!
A,B,C只是杆的名字!!!
因此程序的步骤:
1.当盘子等于一个,直接由x移到z。
2.当盘子大于一个(假设n个),先把n-1个盘子移到y,把第n个也就是最后一个大的,移到z。
3.把y上的盘子移到z。
刚开始我们把A,B,C对应x,y,z
这时有个问题怎么把x上的盘子移到y呢,这时我们就要转换一下,先忽略掉第三个最大的盘的存在,把B杆看成目的地,C杆就变成y了(这就是为什么说ABC与xyz不是一定对应的原因)
完成了上两个转移到B杆,便可以把A杆的最大盘移到C
但当我们完成步骤2时,我们可以把原来的y也就是b杆看成是x(初始放盘子的地方),A杆看成y,C杆看成z(目的地),这时候便于刚开始步骤相似了
{{uploading-image-916509.png(uploading...)}}
所以重要的便是对盘子个数的判断和对xyz的转换
所以可以动手写代码了,如下:
void Hanoi(int n, char x, char y, char z) //n为盘子个数
{
void move(char x, char z);
if (1 == n)//当n等于1,执行步骤1
{
move(x, z);
}
else //当n不等于1,执行步骤2
{
Hanoi(n - 1, x, z, y);//把n-1从x移到y,所以原来的z便是现在借放的y,y同,所以反过来
Hanoi(1, x, y, z);//完成上一步x移到上一步的y,就把最后的第n个从x移到z
Hanoi(n - 1, y, x, z);//(此时的y有n-1个盘子,看成初始位置x),目的地还是z
}
}
所以通过上面的操作便完成了盘子的所有移到
move函数的定义:
void move(char x, char z)
{
printf("%c ---> %c \n", x, z);
}
所以整个程序的代码如下:
int main() {
int n = 0;
void Hanoi(int n, char x, char y, char z);
printf("请输入所要移动的盘子的个数:");
scanf("%d", &n);
Hanoi(n, 'A', 'B', 'C');
}
void Hanoi(int n, char x, char y, char z)
{
void move(char x, char z);
if (1 == n) {
move(x, z);
} else {
Hanoi(n - 1, x, z, y);
Hanoi(1, x, y, z);
Hanoi(n - 1, y, x, z);
}
}
void move(char x, char z)
{
printf("%c ---> %c \n", x, z);
}