120. Triangle

题目:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

链接: http://leetcode.com/problems/triangle/

题解:

自底向上dp。虽然是个简单题, 但自己现在也能写出一些比较简练的代码了,是进步,要肯定。晚上东方串店撸串去!

Time Complexity - O(n),Space Complexity - O(1)。

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle == null || triangle.size() == 0)
return 0; for(int i = triangle.size() - 2; i >= 0; i--) {
for(int j = 0; j < triangle.get(i).size(); j++) {
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
}
} return triangle.get(0).get(0);
}
}

二刷:

一般来说对于题目给出的数据结构比如Tree或者List<>不要轻易修改。我们另外建立一个数组来dp就好了。这里主要使用了自底向上的思路,先初始化dp数组为triangle的最后一行,再用转移方程dp[i] = triangle.get(i).get(j) + Math.min(dp[i], dp[i + 1])就好了。要注意边界条件。

Java:

Time Complexity - O(n),Space Complexity - O(n)。

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return Integer.MIN_VALUE;
}
int rowNum = triangle.size();
List<Integer> lastRow = triangle.get(rowNum - 1);
int[] paths = new int[rowNum]; for (int i = 0; i < lastRow.size(); i++) {
paths[i] = lastRow.get(i);
}
for (int i = rowNum - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
paths[j] = triangle.get(i).get(j) + Math.min(paths[j], paths[j + 1]);
}
}
return paths[0];
}
}

三刷:

Java:

in-place:

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int min = Integer.MAX_VALUE;
if (triangle == null || triangle.size() == 0) return Integer.MAX_VALUE;
for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
}
}
return triangle.get(0).get(0);
}
}

Use auxiliary list

public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int min = Integer.MAX_VALUE;
if (triangle == null || triangle.size() == 0) return Integer.MAX_VALUE; List<Integer> res = new ArrayList<>(triangle.get(triangle.size() - 1)); for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i).size(); j++) {
res.set(j, triangle.get(i).get(j) + Math.min(res.get(j), res.get(j + 1)));
}
}
return res.get(0);
}
}

Reference:

https://leetcode.com/discuss/5337/dp-solution-for-triangle

https://leetcode.com/discuss/10131/my-java-version-solution-with-o-n-space-accepted

https://leetcode.com/discuss/23544/my-8-line-dp-java-code-4-meaningful-lines-with-o-1-space

https://leetcode.com/discuss/20296/bottom-up-5-line-c-solution

上一篇:Spark Streaming揭秘 Day7 再探Job Scheduler


下一篇:快速排序:升序+降序----java实现