Android 贝塞尔曲线 折线图

1、贝塞尔曲线:http://baike.baidu.com/view/60154.htm,在这里理解什么是贝塞尔曲线

2、直接上图:

Android 贝塞尔曲线 折线图

3、100多行代码就可以画出贝塞尔曲线,直接上代码

package com.example.bezier;

import java.util.ArrayList;
import java.util.List; import android.app.Activity;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.PathMeasure;
import android.graphics.Paint.Style;
import android.graphics.Path;
import android.os.Bundle;
import android.view.View;
import android.view.Window;
import android.view.WindowManager; public class MainActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);
setContentView(new BezierView(this));
}
} class BezierView extends View {
/**
*
* @author liqiongwei
* @param context
*
*/
public BezierView(Context context) {
super(context);
} protected void onDraw(Canvas canvas) { List<Float> points = new ArrayList<Float>(); Paint paint = new Paint();
// 添加第一个点(118.0, 294.0),
points.add((float) 118.0);// X轴
points.add((float) 294.0);// Y轴
// 添加第二个点
points.add((float) 206.0);
points.add((float) 294.0);
// 添加第三个点
points.add((float) 294.0);
points.add((float) 118.0);
// 添加第四个点
points.add((float) 382.0);
points.add((float) 206.0); points.add((float) 470.0);
points.add((float) 118.0); // 通过画折线和贝塞尔曲线可以知道,点得位置是不一样的。
// 画折线
for (int i = 0; i < points.size() - 2; i = i + 2) {
canvas.drawLine(points.get(i), points.get(i + 1), points.get(i + 2), points.get(i + 3), paint);
canvas.drawCircle(points.get(i), points.get(i + 1), 3, paint);
}
canvas.drawCircle(points.get(points.size() - 2), points.get(points.size() - 1), 3, paint); // 贝塞尔曲线
paint.setColor(Color.BLUE);
Path p = new Path();
Point p1 = new Point();
Point p2 = new Point();
Point p3 = new Point();
float xp = points.get(0);
float yp = points.get(1);
// 设置第一个点开始
p.moveTo(xp, yp);
int length = points.size();
// 设置第一个控制点33%的距离
float mFirstMultiplier = 0.3f;
// 设置第二个控制点为66%的距离
float mSecondMultiplier = 1 - mFirstMultiplier; for (int b = 0; b < length; b += 2) {
int nextIndex = b + 2 < length ? b + 2 : b;
int nextNextIndex = b + 4 < length ? b + 4 : nextIndex;
// 设置第一个控制点
calc(points, p1, b, nextIndex, mSecondMultiplier);
// 设置第二个控制点
p2.setX(points.get(nextIndex));
p2.setY(points.get(nextIndex + 1));
// 设置第二个控制点
calc(points, p3, nextIndex, nextNextIndex, mFirstMultiplier);
// 最后一个点就是赛贝尔曲线上的点
p.cubicTo(p1.getX(), p1.getY(), p2.getX(), p2.getY(), p3.getX(), p3.getY());
// 画点
}
PathMeasure mPathMeasure;
mPathMeasure = new PathMeasure(p, false);
// 设置为线
paint.setStyle(Style.STROKE);
reSetPointWithPath(mPathMeasure, points);
for (int k = 0; k < points.size()-1; k +=2) {
canvas.drawCircle(points.get(k), points.get(k+1), 5, paint);
}
canvas.drawPath(p, paint); invalidate();
} /**
* 计算控制点
* @param points
* @param result
* @param index1
* @param index2
* @param multiplier
*/
private void calc(List<Float> points, Point result, int index1, int index2, final float multiplier) {
float p1x = points.get(index1);
float p1y = points.get(index1 + 1);
float p2x = points.get(index2);
float p2y = points.get(index2 + 1); float diffX = p2x - p1x;
float diffY = p2y - p1y;
result.setX(p1x + (diffX * multiplier));
result.setY(p1y + (diffY * multiplier));
} /**
* 重新设置点的位置,为曲线上的位置
* @param mPathMeasure
* @param pointsList
*/
public void reSetPointWithPath(PathMeasure mPathMeasure, List<Float> pointsList){
int length = (int) mPathMeasure.getLength();
int pointsLength = pointsList.size();
float[] coords = new float[2];
for (int b = 0; b < length; b++) {
mPathMeasure.getPosTan(b, coords, null);
double prevDiff = Double.MAX_VALUE;
boolean ok = true;
for (int j = 0; j < pointsLength && ok; j += 2) {
double diff = Math.abs(pointsList.get(j) - coords[0]);
if (diff < 1) {
pointsList.set(j + 1, coords[1]);
prevDiff = diff;
}
ok = prevDiff > diff;
}
}
}
}

4、定义点的类

package com.example.bezier;

import java.io.Serializable;

/**
* 点的类,来源于Achartengine
*/
public final class Point implements Serializable {
private float mX;
private float mY; public Point() {
} public Point(float x, float y) {
mX = x;
mY = y;
} public float getX() {
return mX;
} public float getY() {
return mY;
} public void setX(float x) {
mX = x;
} public void setY(float y) {
mY = y;
}
}

5、下载地址:http://files.cnblogs.com/liqw/Bezier.zip

本文来源于:http://www.cnblogs.com/liqw/p/3631137.html

有问题,请提问,大家一起研究!

上一篇:H3 BPM 笔记


下一篇:阿里流计算平台开发实例之电商双11实时计算