用O(1)的时间复杂度,找到栈和队列中的最小(大)值

最近刷剑指offer,看到两道编程题,考察在O(1)的复杂度内,找出最值。

觉得很有意思,很有借鉴意义,故记录在此。

需要注意的是,这里所说的O(1) 有个前提, 就是已经通过某种容器的存储方式进行初始化,

不然不可能在还未遍历数据的情况下就定位出最值。

问题1: 重新定义栈的数据结构,实现一个能够在O(1)时间复杂度内求出栈内最小元素的min函数。

思路: 需要一个变量minimum保存目前栈内所有值的最小值,因为最小值是随着出栈,入栈操作变化的,所以一个变量是不够的。

考虑引入辅助栈,辅助栈中保存于数据栈中同步的当前最小值。 即辅助栈栈顶元素为当前数据栈内的最小值。

例如:stack_data中元素为[3,4,1,2]  , 则stack_support中为[3,3,1,1]。 当数据栈2出栈,同时辅助栈1出栈, 则剩余中最小值还是辅助栈顶元素1; 数据栈再出栈1,辅助栈也出栈1, 则剩下的数据栈最小元素为辅助栈栈顶元素3.

需要重写栈的push, pop操作。

C++代码:

 template <typename T> class NewStack
{
private :
std::stack<T> stack_data;
std::stack<T> stack_support; public: NewStack();
~NewStack(); void push( T value)
{
stack_data.push_back(value); if (stack_support.size()== || stack_support.top()>value)
stack_support.push_back(value);
else:
stack_support.push_back(stack_support.top()); } void pop()
{
if (stack_data.size()> && stack_support.size()>)
{
stack_data.pop_back();
stack_support.pop_back();
} } T min()
{
if (stack_data.size()> && stack_support.size()>)
{
return stack_support.top();
} }

问题2:实现在O(1)时间复杂度内,找出队列中的最小值。

思路:前文中我们实现了栈中O(1)找最小值,因此我们只需要通过两个栈(FILO)实现一个队列(FIFO),就可以实现队列O(1)找到最小值。

即stack1的栈顶作为queue的入口,stack2的栈顶作为queue的出口。

C++代码:两个栈实现一个队列如下所示:

 template <typename T> class NewQueue
{
private :
std::stack<T> stack1;
std::stack<T> stack2; public: NewQueue(void);
~NewQueue(void); void append(T value)
{
stack1.push_back(value); } T pop()
{
//如果stack2为空,则从stack1拿元素中入栈到stack中
if (stack2.size()<=)
{
while(stack1.size()>)
{
T element = stack1.top();
stack1.pop_back();
stack2.push_back(element); } }
// 如果已经没有元素可以出栈了
if (stack1.size()==)
throw new exception("queue is empty.") T res = stack2.top();
stack2.pop_back();
return res;
} }

如果要解决问题2, 只需结合代码1和2,在代码2中引入stack_support存放最小值即可:

代码如下:

 template <typename T> class NewQueue
{
private :
std::stack<T> stack1;
std::stack<T> stack2;
std::stack<T> stack_support; public: NewQueue(void);
~NewQueue(void); void append(T value)
{
stack1.push_back(value); if (stack_support.size()== || stack_support.top()>value)
stack_support.push_back(value);
else:
stack_support.push_back(stack_support.top()); } T pop()
{
//如果stack2为空,则从stack1拿元素中入栈到stack中
if (stack2.size()<=)
{
while(stack1.size()>)
{
T element = stack1.top();
stack1.pop_back();
stack2.push_back(element); } }
// 如果已经没有元素可以出栈了
if (stack2.size()== && stack_support.size()==)
throw new exception("queue is empty.") T res = stack2.top();
stack2.pop_back(); stack_support.pop_back();
return res; T min()
{
if (stack2.size()> && stack_support.size()>)
{
return stack_support.top();
}
} }
上一篇:我收藏的技术知识图(每张都是大图)关于XX背后的知识、技术图,例如:Linux、Nginx架构、PHP知识卡、机会、HTML5移动、Android系统架构、YII架构的典型流程、Css知识表


下一篇:jsDoc的使用