Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1707 Accepted Submission(s): 729
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
Sample Output
Case #1: Yes
Case #2: No
Case #2: No
Author
BJTU
Source
Recommend
zhoujiaqi2010
题意分析(转载):
此题可以一遍拓扑排序判环求解 即只需要找到一个环,
就必定存在三元环 证明如下: 假设存在一个n元环,
因为a->b有边,b->a必定没边,反之也成立
所以假设有环上三个相邻的点a-> b-> c,那么如果c->a间有边,
就已经形成了一个三元环,如果c->a没边,那么a->c肯定有边,
这样就形成了一个n-1元环。。。。
所以只需证明n大于3时一定有三元环即可,显然成立。
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int N=; int n,indeg[N]; //存储的是节点的入度
char str[N][N]; int main(){ //freopen("input.txt","r",stdin); int t,cases=;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
int flag=;
memset(indeg,,sizeof(indeg)); //将所有的节点入度初始化为0
int i,j;
for(i=;i<n;i++){
scanf("%s",str[i]);
for(j=;j<n;j++)
if(str[i][j]=='') //如果i喜欢j,则把j的入度加1
indeg[j]++;
}
for(i=;i<n;i++){
for(j=;j<n;j++)
if(indeg[j]==) //找出入度为0的节点
break;
if(j==n){ //任何一个节点的入度都不为0,说明存在环了,则必有三角恋
flag=;
break;
}else{
indeg[j]--; //除去当前结点
for(int k=;k<n;k++) //把从这个节点出发的引起的节点的入度都减去1
if(str[j][k]=='')
indeg[k]--;
}
}
if(flag)
printf("Case #%d: Yes\n",++cases);
else
printf("Case #%d: No\n",++cases);
}
return ;
}