Given two integers, a and b, you should check whether a is divisible by b or not. We know that an integer a is divisible by an integer b if and only if there exists an integer c such that a = b * c.
Input
Input starts with an integer T (≤ 525), denoting the number of test cases.
Each case starts with a line containing two integers a (-10200 ≤ a ≤ 10200) and b (|b| > 0, b fits into a 32 bit signed integer). Numbers will not contain leading zeroes.
Output
For each case, print the case number first. Then print 'divisible' if a is divisible by b. Otherwise print 'not divisible'.
Sample Input |
Output for Sample Input |
6 101 101 0 67 -101 101 7678123668327637674887634 101 11010000000000000000 256 -202202202202000202202202 -101 |
Case 1: divisible Case 2: divisible Case 3: divisible Case 4: not divisible Case 5: divisible Case 6: divisible |
题意:给出两个数a, b,问能否被b整除。
题解:基础数论。简单的同余定理应用,将a作为字串储存,相当于每x位(和b同位)模b一次,得到余数时相当于将这个区间改写成这个余数,移动区间继续运算。最终余数为零时代表可以被整除,非零则否。
补充:其实可以想成这样,三位数就是百进制,四位数就是千进制的同余定理。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#define ll long long
using namespace std; char a[];
int main()
{
int T, x, s;
ll t, b;
scanf("%d", &T);
for(int i=; i<=T; i++)
{
scanf("%s %lld", a, &b);
x=strlen(a);
if(a[]=='-')//注意负数变正
{
s=;
t=a[]-'';
}
else
{
s=;
t=a[]-'';
}
t=t%abs(b);
for(int j=s; j<x; j++)
{
t=(t*+a[j]-'')%abs(b); //同余定理的应用
} if(t==)
{
printf("Case %d: divisible\n", i);
}
else
printf("Case %d: not divisible\n", i); } }